301 research outputs found

    Radio Recombination Lines from Starbursts: NGC 3256, NGC 4945 and the Circinus Galaxy

    Get PDF
    A renewed attempt to detect radio recombination lines from external galaxies has resulted in the measurement of lines from several bright starburst galaxies. The lines are produced by hydrogen ionized by young, high-mass stars and are diagnostic of the conditions and gas dynamics in the starburst regions without problems of dust obscuration. We present here detections of the lines H91alpha and H92alpha near 8.6 GHz from the starburst nuclei in NGC 3256, NGC 4945, and the Circinus galaxy using the ATCA and VLA. Modelling the line emitting region as a collection of H II regions, we derive the required number of H II regions, their temperature, density, and distribution.Comment: 6 pages, to appear in "Proc 331. Heraeus Seminar: The Evolution of Starbursts", Bad Honnef, Germany, Aug 16 - 20, 2004, Eds: S. Huettemeister, S. Aalto, D.J. Bomans, and E. Manthe

    Oral-facial tissue reconstruction in the regenerative axolotl

    Full text link
    Absence of large amounts of orofacial tissues caused by cancerous resections, congenital defects or trauma result in sequelae such as dysphagia and noticeable scars. Oral-neck tissue regeneration was studied in the axolotl (regenerative amphibian) following a 2.5mm punch biopsy that simultaneously removed skin, connective tissue, muscle, and cartilage in the tongue and intermandibular region. The untreated wound was studied macroscopically and histologically at 17 different time points ranging from 0-180d (N= 120 axolotls). At 12h the wound’s surface was smoothened and within 1mm, internal lingual muscular modifications occurred; at the same distance, between days 4-7 lingual muscle degradation was complete. Immunofluorescence indicates complete keratinocytes migration by 48h. These cells with epidermal Leydig cells, appearing yellow, lead the chin’s deep tissue outgrowth until its closure on the 14th day. Regeneration speeds varied and peaked in time for each tissue, 1) deep Immunofluorescence to Col IV showed basement membrane reconnected between days 30-45 coinciding with the chin’s dermal tissue’s surface area recovery. New muscle appeared at 21d and was always preceded by the formation of a collagen bed. Both chin tissues regain all surface area and practically all components while the lingual structure lacks some content but is generally similar to the original. The methodology and high-resolution observations described here are the first of its kind for this animal model and could serve as a basis for future studies in oral and facial regenerative research

    Tiny scale opacity fluctuations from VLBA, MERLIN and VLA observations of HI absorption toward 3C 138

    Full text link
    The structure function of opacity fluctuations is a useful statistical tool to study tiny scale structures of neutral hydrogen. Here we present high resolution observation of HI absorption towards 3C 138, and estimate the structure function of opacity fluctuations from the combined VLA, MERLIN and VLBA data. The angular scales probed in this work are ~ 10-200 milliarcsec (about 5-100 AU). The structure function in this range is found to be well represented by a power law S_tau(x) ~ x^{beta} with index beta ~ 0.33 +/- 0.07 corresponding to a power spectrum P_tau(U) ~ U^{-2.33}. This is slightly shallower than the earlier reported power law index of ~ 2.5-3.0 at ~ 1000 AU to few pc scales. The amplitude of the derived structure function is a factor of ~ 20-60 times higher than the extrapolated amplitude from observation of Cas A at larger scales. On the other hand, extrapolating the AU scale structure function for 3C 138 predicts the observed structure function for Cas A at the pc scale correctly. These results clearly establish that the atomic gas has significantly more structures in AU scales than expected from earlier pc scale observations. Some plausible reasons are identified and discussed here to explain these results. The observational evidence of a shallower slope and the presence of rich small scale structures may have implications for the current understanding of the interstellar turbulence.Comment: 6 pages, 5 figures. Accepted for publication in ApJ. The definitive version will be available at http://iopscience.iop.org
    corecore