2,608 research outputs found
Sub-Milliarcsecond Precision of Pulsar Motions: Using In-Beam Calibrators with the VLBA
We present Very Long Baseline Array phase-referenced measurements of the
parallax and proper motion of two pulsars, B0919+06 and B1857-26.
Sub-milliarcsecond positional accuracy was obtained by simultaneously observing
a weak calibrator source within the 40' field of view of the VLBA at 1.5 GHz.
We discuss the merits of using weak close calibrator sources for VLBI
observations at low frequencies, and outline a method of observation and data
reduction for these type of measurements. For the pulsar B1919+06 we measure a
parallax of 0.31 +/- 0.14 mas. The accuracy of the proper motions is
approximately 0.5 mas, an order of magnitude improvement over most previous
determinations.Comment: 11 pages plus 4 figures. In press, Astronomical Journa
Parallax and Kinematics of PSR B0919+06 from VLBA Astrometry and Interstellar Scintillometry
Results are presented from a long-term astrometry program on PSR B0919+06
using the NRAO Very Long Baseline Array. With ten observations (seven epochs)
between 1994--2000, we measure a proper motion of 18.35 +/- 0.06 mas/yr in RA,
86.56 +/- 0.12 mas/yr in Dec, and a parallax of 0.83 +/- 0.13 mas (68%
confidence intervals). This yields a pulsar distance of 1.21 +/- 0.19 kpc,
making PSR B0919+06 the farthest pulsar for which a trigonometric parallax has
been obtained, and the implied pulsar transverse speed is 505 +/- 80 km/s.
Combining the distance estimate with interstellar scintillation data spanning
20 years, we infer the existence of a patchy or clumpy scattering screen along
the line of sight in addition to the distributed electron density predicted by
models for the Galaxy, and constrain the location of this scattering region to
within about 250 parsecs of the Sun. Comparison with the lines of sight towards
other pulsars in the same quadrant of the Galaxy permits refinement of our
knowledge of the local interstellar matter in this direction.Comment: 12 pages, includes 4 figures and 3 tables, uses AASTeX 5 (included);
ApJ submitte
VLA Observations of the "Eye of the Tornado"- the High Velocity \HII Region G357.63-0.06
The unusual supernova remnant candidate G357.7-0.1 and the compact source
G357.63-0.06 have been observed with the Very Large Array at 1.4 and 8.3 GHz.
The H92 line (8.3 GHz) was detected from the compact source with a
surprising velocity of about -210 km/s indicating that this source is an \HII
region, is most likely located at the Galactic center, and is unrelated to the
SNR. The \HI absorption line (1.4 GHz) data toward these sources supports this
picture and suggests that G357.7-0.1 lies farther away than the Galactic
center.Comment: Latex, 14 pages including 4 figures. Accepted to A
The Stellar Content of Obscured Galactic Giant H II Regions IV.: NGC3576
We present deep, high angular resolution near-infrared images of the obscured
Galactic Giant H II region NGC3576. Our images reach objects to ~3M_sun. We
collected high signal-to-noise K-band spectra of eight of the brightest
objects, some of which are affected by excess emission and some which follow a
normal interstellar reddening law. None of them displayed photospheric features
typical of massive OB type stars. This indicates that they are still enshrouded
in their natal cocoons. The K-band brightest source (NGC3576 #48) shows CO 2.3
micron bandhead emission, and three others have the same CO feature in
absorption. Three sources display spatially unresolved H_2 emission, suggesting
dense shocked regions close to the stars. We conclude that the remarkable
object NGC3576 #48 is an early-B/late-O star surrounded by a thick
circumstellar disk. A number of other relatively bright cluster members also
display excess emission in the K-band, indicative of reprocessing disks around
massive stars (YSOs). Such emission appears common in other Galactic Giant H II
regions we have surveyed. The IMF slope of the cluster, Gamma = -1.51, is
consistent with Salpeter's distribution and similar to what has been observed
in the Magellanic Cloud clusters and in the periphery of our Galaxy.Comment: 14 pages, 11 figures, accepted for publication in A
A Review of H2CO 6cm Masers in the Galaxy
We present a review of the field of formaldehyde (H2CO) 6cm masers in the
Galaxy. Previous to our ongoing work, H2CO 6cm masers had been detected in the
Galaxy only toward three regions: NGC7538 IRS1, Sgr B2, and G29.96-0.02.
Current efforts by our group using the Very Large Array, Arecibo, and the Green
Bank Telescope have resulted in the detection of four new H2CO 6cm maser
regions. We discuss the characteristics of the known H2CO masers and the
association of H2CO 6cm masers with very young regions of massive star
formation. We also review the current ideas on the pumping mechanism for H2CO
6cm masers.Comment: 10 pages, 5 figures, IAU Symposium 242: Astrophysical Masers and
their Environment
VLA Observations of H I in the Helix Nebula (NGC 7293)
We report the detection of 21-cm line emission from H I in the planetary
nebula NGC 7293 (the Helix). The observations, made with the Very Large Array,
show the presence of a ring of atomic hydrogen that is associated with the
outer portion of the ionized nebula. This ring is most probably gas ejected in
the AGB phase that has been subsequently photodissociated by radiation from the
central star. The H I emission spreads over about 50 km/s in radial velocity.
The mass in H I is approximately 0.07 solar masses, about three times larger
than the mass in molecular hydrogen and comparable with the mass in ionized
hydrogen.Comment: 19 pages, 9 figure
An H2CO 6cm Maser Pinpointing a Possible Circumstellar Torus in IRAS18566+0408
We report observations of 6cm, 3.6cm, 1.3cm, and 7mm radio continuum,
conducted with the Very Large Array towards IRAS18566+0408, one of the few
sources known to harbor H2CO 6cm maser emission. Our observations reveal that
the emission is dominated by an ionized jet at cm wavelengths. Spitzer/IRAC
images from GLIMPSE support this interpretation, given the presence of 4.5um
excess emission at approximately the same orientation as the cm continuum. The
7mm emission is dominated by thermal dust from a flattened structure almost
perpendicular to the ionized jet, thus, the 7mm emission appears to trace a
torus associated with a young massive stellar object. The H2CO 6cm maser is
coincident with the center of the torus-like structure. Our observations rule
out radiative pumping via radio continuum as the excitation mechanism for the
H2CO 6cm maser in IRAS18566+0408.Comment: 20 pages, 4 figures, ApJ (in press
The Intrinsic Size of Sagittarius A* from 0.35 cm to 6 cm
We present new high-resolution observations of Sagittarius A* at wavelengths
of 17.4 to 23.8 cm with the Very Large Array in A configuration with the Pie
Town Very Long Baseline Array antenna. We use the measured sizes to calibrate
the interstellar scattering law and find that the major axis size of the
scattering law is smaller by ~6% than previous estimates. Using the new
scattering law, we are able to determine the intrinsic size of Sgr A* at
wavelengths from 0.35 cm to 6 cm using existing results from the VLBA. The new
law increases the intrinsic size at 0.7 cm by ~20% and <5% at 0.35 cm. The
intrinsic size is 13^{+7}_{-3} Schwarzschild radii at 0.35 cm and is
proportional to lambda^gamma, where gamma is in the range 1.3 to 1.7.Comment: ApJL, in pres
- …