6 research outputs found
Three K2 campaigns yield rotation periods for 1013 stars in Praesepe
We use three campaigns of K2 observations to complete the census of rotation in low-mass members of the benchmark, â670 Myr old open cluster Praesepe. We measure new rotation periods (Prot) for 220âČ1.3 Mâ Praesepe members and recovery periods for 97% (793/812) of the stars with a Prot in the literature. Of the 19 stars for which we do not recover a Prot, 17 were not observed by K2. As K2âs three Praesepe campaigns took place over the course of 3 yr, we test the stability of our measured Prot for stars observed in more than one campaign. We measure Prot consistent to within 10% for >95% of the 331 likely single stars with â„2 high-quality observations; the median difference in Prot is 0.3%, with a standard deviation of 2%. Nearly all of the exceptions are stars with discrepant Prot measurements in Campaign 18, K2âs last, which was significantly shorter than the earlier two (â50 days rather than â75 days). This suggests that, despite the evident morphological evolution we observe in the light curves of 38% of the stars, Prot measurements for low-mass stars in Praesepe are stable on timescales of several years. A Prot can therefore be taken to be representative even if measured only once
Constraints on blue straggler formation mechanisms in Galactic globular clusters from proper motion velocity distributions
For a sample of 38 Galactic globular clusters (GCs), we confront the observed distributions of blue straggler (BS) proper motions and masses (derived from isochrone fitting) from the BS catalog of Simunovic & Puzia with theoretical predictions for each of the two main competing BS formation mechanisms. These are mass transfer from an evolved donor on to a main-sequence (MS) star in a close binary system, and direct collisions involving MS stars during binary encounters. We use the \texttt{FEWBODY} code to perform simulations of single-binary and binary-binary interactions. This provides collisional velocity and mass distributions for comparison to the observed distributions. Most clusters are consistent with BSs derived from a dynamically relaxed population, supportive of the binary mass-transfer scenario. In a few clusters, including all the post-core collapse clusters in our sample, the collisional velocities provide the best fit