50 research outputs found
Solar Flares and Coronal Mass Ejections: A Statistically Determined Flare Flux-CME Mass Correlation
In an effort to examine the relationship between flare flux and corresponding
CME mass, we temporally and spatially correlate all X-ray flares and CMEs in
the LASCO and GOES archives from 1996 to 2006. We cross-reference 6,733 CMEs
having well-measured masses against 12,050 X-ray flares having position
information as determined from their optical counterparts. For a given flare,
we search in time for CMEs which occur 10-80 minutes afterward, and we further
require the flare and CME to occur within +/-45 degrees in position angle on
the solar disk. There are 826 CME/flare pairs which fit these criteria.
Comparing the flare fluxes with CME masses of these paired events, we find CME
mass increases with flare flux, following an approximately log-linear, broken
relationship: in the limit of lower flare fluxes, log(CME mass)~0.68*log(flare
flux), and in the limit of higher flare fluxes, log(CME mass)~0.33*log(flare
flux). We show that this broken power-law, and in particular the flatter slope
at higher flare fluxes, may be due to an observational bias against CMEs
associated with the most energetic flares: halo CMEs. Correcting for this bias
yields a single power-law relationship of the form log(CME mass)~0.70*log(flare
flux). This function describes the relationship between CME mass and flare flux
over at least 3 dex in flare flux, from ~10^-7 to 10^-4 W m^-2.Comment: 28 pages, 16 figures, accepted to Solar Physic
How Many CMEs Have Flux Ropes? Deciphering the Signatures of Shocks, Flux Ropes, and Prominences in Coronagraph Observations of CMEs
We intend to provide a comprehensive answer to the question on whether all
Coronal Mass Ejections (CMEs) have flux rope structure. To achieve this, we
present a synthesis of the LASCO CME observations over the last sixteen years,
assisted by 3D MHD simulations of the breakout model, EUV and coronagraphic
observations from STEREO and SDO, and statistics from a revised LASCO CME
database. We argue that the bright loop often seen as the CME leading edge is
the result of pileup at the boundary of the erupting flux rope irrespective of
whether a cavity or, more generally, a 3-part CME can be identified. Based on
our previous work on white light shock detection and supported by the MHD
simulations, we identify a new type of morphology, the `two-front' morphology.
It consists of a faint front followed by diffuse emission and the bright
loop-like CME leading edge. We show that the faint front is caused by density
compression at a wave (or possibly shock) front driven by the CME. We also
present high-detailed multi-wavelength EUV observations that clarify the
relative positioning of the prominence at the bottom of a coronal cavity with
clear flux rope structure. Finally, we visually check the full LASCO CME
database for flux rope structures. In the process, we classify the events into
two clear flux rope classes (`3-part', `Loop'), jets and outflows (no clear
structure). We find that at least 40% of the observed CMEs have clear flux rope
structures. We propose a new definition for flux rope CMEs (FR-CMEs) as a
coherent magnetic, twist-carrying coronal structure with angular width of at
least 40 deg and able to reach beyond 10 Rsun which erupts on a time scale of a
few minutes to several hours. We conclude that flux ropes are a common
occurrence in CMEs and pose a challenge for future studies to identify CMEs
that are clearly not FR-CMEs.Comment: 26 pages, 9 figs, to be published in Solar Physics Topical Issue
"Flux Rope Structure of CMEs
Signatures of the slow solar wind streams from active regions in the inner corona
Some of local sources of the slow solar wind can be associated with
spectroscopically detected plasma outflows at edges of active regions
accompanied with specific signatures in the inner corona. The EUV telescopes
(e.g. SPIRIT/CORONAS-F, TESIS/CORONAS-Photon and SWAP/PROBA2) sometimes
observed extended ray-like structures seen at the limb above active regions in
1MK iron emission lines and described as "coronal rays". To verify the
relationship between coronal rays and plasma outflows, we analyze an isolated
active region (AR) adjacent to small coronal hole (CH) observed by different
EUV instruments in the end of July - beginning of August 2009. On August 1 EIS
revealed in the AR two compact outflows with the Doppler velocities V =10-30
km/s accompanied with fan loops diverging from their regions. At the limb the
ARCH interface region produced coronal rays observed by EUVI/STEREO-A on July
31 as well as by TESIS on August 7. The rays were co-aligned with open magnetic
field lines expanded to the streamer stalks. Using the DEM analysis, it was
found that the fan loops diverged from the outflow regions had the dominant
temperature of ~1 MK, which is similar to that of the outgoing plasma streams.
Parameters of the solar wind measured by STEREO-B, ACE, WIND, STEREO-A were
conformed with identification of the ARCH as a source region at the
Wang-Sheeley-Arge map of derived coronal holes for CR 2086. The results of the
study support the suggestion that coronal rays can represent signatures of
outflows from ARs propagating in the inner corona along open field lines into
the heliosphere.Comment: Accepted for publication in Solar Physics; 31 Pages; 13 Figure
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection
Realistic astrophysical environments are turbulent due to the extremely high
Reynolds numbers. Therefore, the theories of reconnection intended for
describing astrophysical reconnection should not ignore the effects of
turbulence on magnetic reconnection. Turbulence is known to change the nature
of many physical processes dramatically and in this review we claim that
magnetic reconnection is not an exception. We stress that not only
astrophysical turbulence is ubiquitous, but also magnetic reconnection itself
induces turbulence. Thus turbulence must be accounted for in any realistic
astrophysical reconnection setup. We argue that due to the similarities of MHD
turbulence in relativistic and non-relativistic cases the theory of magnetic
reconnection developed for the non-relativistic case can be extended to the
relativistic case and we provide numerical simulations that support this
conjecture. We also provide quantitative comparisons of the theoretical
predictions and results of numerical experiments, including the situations when
turbulent reconnection is self-driven, i.e. the turbulence in the system is
generated by the reconnection process itself. We show how turbulent
reconnection entails the violation of magnetic flux freezing, the conclusion
that has really far reaching consequences for many realistically turbulent
astrophysical environments. In addition, we consider observational testing of
turbulent reconnection as well as numerous implications of the theory. The
former includes the Sun and solar wind reconnection, while the latter include
the process of reconnection diffusion induced by turbulent reconnection, the
acceleration of energetic particles, bursts of turbulent reconnection related
to black hole sources as well as gamma ray bursts. Finally, we explain why
turbulent reconnection cannot be explained by turbulent resistivity or derived
through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection -
Concepts and Applications", editors W. Gonzalez, E. N. Parke
Functional Anatomy of the Female Pelvic Floor
The anatomic structures in the female that prevent incontinence and genital organ prolapse on increases in abdominal pressure during daily activities include sphincteric and supportive systems. In the urethra, the action of the vesical neck and urethral sphincteric mechanisms maintains urethral closure pressure above bladder pressure. Decreases in the number of striated muscle fibers of the sphincter occur with age and parity. A supportive hammock under the urethra and vesical neck provides a firm backstop against which the urethra is compressed during increases in abdominal pressure to maintain urethral closure pressures above the rapidly increasing bladder pressure. This supporting layer consists of the anterior vaginal wall and the connective tissue that attaches it to the pelvic bones through the pubovaginal portion of the levator ani muscle, and the uterosacral and cardinal ligaments comprising the tendinous arch of the pelvic fascia. At rest the levator ani maintains closure of the urogenital hiatus. They are additionally recruited to maintain hiatal closure in the face of inertial loads related to visceral accelerations as well as abdominal pressurization in daily activities involving recruitment of the abdominal wall musculature and diaphragm. Vaginal birth is associated with an increased risk of levator ani defects, as well as genital organ prolapse and urinary incontinence. Computer models indicate that vaginal birth places the levator ani under tissue stretch ratios of up to 3.3 and the pudendal nerve under strains of up to 33%, respectively. Research is needed to better identify the pathomechanics of these conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72597/1/annals.1389.034.pd
The Origin, Early Evolution and Predictability of Solar Eruptions
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt