53 research outputs found
Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer
<p>Aims: DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. In addition, DDX3 was shown to be a direct downstream target of HIF-1Ξ± (the master regulatory of the hypoxia response) in breast cancer cell lines. However, the relation between DDX3 and hypoxia has not been addressed in human tumors. In this paper, we studied the relation between DDX3 and the hypoxic responsive proteins in human breast cancer.</p>
<p>Methods and Results: DDX3 expression was investigated by immunohistochemistry in breast cancer in comparison with hypoxia related proteins HIF-1Ξ±, GLUT1, CAIX, EGFR, HER2, Akt1, FOXO4, p53, ERΞ±, COMMD1, FER kinase, PIN1, E-cadherin, p21, p27, Transferrin receptor, FOXO3A, c-Met and Notch1. DDX3 was overexpressed in 127 of 366 breast cancer patients, and was correlated with overexpression of HIF-1Ξ± and its downstream genes CAIX and GLUT1. Moreover, DDX3 expression correlated with hypoxia-related proteins EGFR, HER2, FOXO4, ERΞ± and c-Met in a HIF-1Ξ± dependent fashion, and with COMMD1, FER kinase, Akt1, E-cadherin, TfR and FOXO3A independent of HIF-1Ξ±.</p>
<p>Conclusions: In invasive breast cancer, expression of DDX3 was correlated with overexpression of HIF-1Ξ± and many other hypoxia related proteins, pointing to a distinct role for DDX3 under hypoxic conditions and supporting the oncogenic role of DDX3 which could have clinical implication for current development of DDX3 inhibitors.</p>
Artificially Induced Epithelial-Mesenchymal Transition in Surgical Subjects: Its Implications in Clinical and Basic Cancer Research
BACKGROUND: Surgical samples have long been used as important subjects for cancer research. In accordance with an increase of neoadjuvant therapy, biopsy samples have recently become imperative for cancer transcriptome. On the other hand, both biopsy and surgical samples are available for expression profiling for predicting clinical outcome by adjuvant therapy; however, it is still unclear whether surgical sample expression profiles are useful for prediction via biopsy samples, because little has been done about comparative gene expression profiling between the two kinds of samples. METHODOLOGY AND FINDINGS: A total of 166 samples (77 biopsy and 89 surgical) of normal and malignant lesions of the esophagus were analyzed by microarrays. Gene expression profiles were compared between biopsy and surgical samples. Artificially induced epithelial-mesenchymal transition (aiEMT) was found in the surgical samples, and also occurred in mouse esophageal epithelial cell layers under an ischemic condition. Identification of clinically significant subgroups was thought to be disrupted by the disorder of the expression profile through this aiEMT. CONCLUSION AND SIGNIFICANCE: This study will evoke the fundamental misinterpretation including underestimation of the prognostic evaluation power of markers by overestimation of EMT IN past cancer research, and will furnish some advice for the near future as follows: 1) Understanding how long the tissues were under an ischemic condition. 2) Prevalence of biopsy samples for in vivo expression profiling with low biases on basic and clinical research. 3) Checking cancer cell contents and normal- or necrotic-tissue contamination in biopsy samples for prevalence
Presence of HIF-1 and related genes in normal mucosa, adenomas and carcinomas of the colorectum
Expression of the transcription factor hypoxia-inducible factor 1 (HIF-1), which plays a key role in cellular adaptation to hypoxia, was investigated in normal colorectal mucosa (ten), adenomas (61), and carcinomas (23). Tissue samples were analyzed for HIF-1Ξ±, its upstream regulators, von HippelβLindau factor, AKT, and mammalian target of rapamycin (mTOR) and its downstream targets glucose transporter 1 (GLUT1), carbonic anhydrase IX, stromal-cell-derived factor 1 (SDF-1) by immunohistochemistry. In normal colorectal mucosa, HIF-1Ξ± was observed in almost all nuclei of surface epithelial cells, probably secondary to a gradient of oxygenation, as indicated by pimonidazole staining. The same staining pattern was present in 87% of adenomas. In carcinomas, HIF-1Ξ± was present predominantly around areas of necrosis (78%). Active AKT and mTOR, were present in all adenomas, carcinomas, and in normal colorectal mucosa. GLUT1 and SDF-1 were present in the normal surface epithelium of all adenoma cases, whereas in the carcinoma GLUT1 was located around necrotic regions and SDF-1 was present in all epithelial cells. In conclusion, HIF-1Ξ± appears to be physiologically expressed in the upper part of the colorectal mucosa. The present observations support that upregulation of HIF-1Ξ± and its downstream targets GLUT1 and SDF-1 in colorectal adenomas and carcinomas may be due to hypoxia, in close interaction with an active phosphatidylinositol 3-kinasesβAKTβmTOR pathway
Epigenomic analysis of aberrantly methylated genes in colorectal cancer identifies genes commonly affected by epigenetic alterations.
Methylation profiling based on bead-chip arrays is an effective method for screening aberrantly methylated genes in CRC. In addition, we identified novel methylated genes that are candidate diagnostic or prognostic markers for CRC
EMT and Stem Cell-Like Properties Associated with HIF-2Ξ± Are Involved in Arsenite-Induced Transformation of Human Bronchial Epithelial Cells
Arsenic is well-established as a human carcinogen, but the molecular mechanisms leading to arsenic-induced carcinogenesis are complex and elusive. It is not been determined if the epithelial-mesenchymal transition (EMT) and stem cell-like properties contribute in causing to carcinogen-induced malignant transformation and subsequent tumor formation.To investigate the molecular mechanisms underlying EMT and the emergence of cancer stem cell-like properties during neoplastic transformation of human bronchial epithelial (HBE) cells induced by chronic exposure to arsenite. HBE cells were continuously exposed to arsenite. Spheroid formation assays and analyses of side populations (SPs) were performed to confirm that arsenite induces the acquired EMT and cancer stem cell-like phenotype. Treated HBE cells were molecularly characterized by RT-PCR, Western blots, immunofluorescence, Southwestern assays, reporter assays, and chromatin immunoprecipitation.With chronic exposure to arsenite, HBE cells undergo an EMT and then acquire a malignant cancer stem cell-like phenotype. Twist1 and Bmi1 are involved in arsenite-induced EMT. The process is directly regulated by HIF-2Ξ±. The self-renewal genes, Oct4, Bmi1, and ALDH1, are necessary for arsenite-mediated maintenance of stem cells.EMT, regulated by HIF-2Ξ±, and the development of a cancer stem cell-like phenotype are associated with arsenite-induced transformation of HBE cells
Genetic Ablation of Bcl-x Attenuates Invasiveness without Affecting Apoptosis or Tumor Growth in a Mouse Model of Pancreatic Neuroendocrine Cancer
Tumor cell death is modulated by an intrinsic cell death pathway controlled by the pro- and anti-apoptotic members of the Bcl-2 family. Up-regulation of anti-apoptotic Bcl-2 family members has been shown to suppress cell death in pre-clinical models of human cancer and is implicated in human tumor progression. Previous gain-of-function studies in the RIP1-Tag2 model of pancreatic islet carcinogenesis, involving uniform or focal/temporal over-expression of Bcl-xL, demonstrated accelerated tumor formation and growth. To specifically assess the role of endogenous Bcl-x in regulating apoptosis and tumor progression in this model, we engineered a pancreatic Ξ²-cell-specific knockout of both alleles of Bcl-x using the Cre-LoxP system of homologous recombination. Surprisingly, there was no appreciable effect on tumor cell apoptosis rates or on tumor growth in the Bcl-x knockout mice. Other anti-apoptotic Bcl-2 family members were expressed but not substantively altered at the mRNA level in the Bcl-x-null tumors, suggestive of redundancy without compensatory transcriptional up-regulation. Interestingly, the incidence of invasive carcinomas was reduced, and tumor cells lacking Bcl-x were impaired in invasion in a two-chamber trans-well assay under conditions mimicking hypoxia. Thus, while the function of Bcl-x in suppressing apoptosis and thereby promoting tumor growth is evidently redundant, genetic ablation implicates Bcl-x in selectively facilitating invasion, consistent with a recent report documenting a pro-invasive capability of Bcl-xL upon exogenous over-expression
Cross talk between hedgehog and epithelialβmesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers
We previously reported hedgehog (Hh) signal activation in the mucus-secreting pit cell of the stomach and in diffuse-type gastric cancer (GC). Epithelialβmesenchymal transition (EMT) is known to be involved in tumour malignancy. However, little is known about whether and how both signallings cooperatively act in diffuse-type GC. By microarray and reverse transcriptionβPCR, we investigated the expression of those Hh and EMT signalling molecules in pit cells and in diffuse-type GCs. How both signallings act cooperatively in those cells was also investigated by the treatment of an Hh-signal inhibitor and siRNAs of Hh and EMT transcriptional key regulator genes on a mouse primary culture and on human GC cell lines. Pit cells and diffuse-type GCs co-expressed many Hh and EMT signalling genes. Mesenchymal-related genes (WNT5A, CDH2, PDGFRB, EDNRA, ROBO1, ROR2, and MEF2C) were found to be activated by an EMT regulator, SIP1/ZFHX1B/ZEB2, which was a target of a primary transcriptional regulator GLI1 in Hh signal. Furthermore, we identified two cancer-specific Hh targets, ELK1 and MSX2, which have an essential role in GC cell growth. These findings suggest that the gastric pit cell exhibits mesenchymal-like gene expression, and that diffuse-type GC maintains expression through the HhβEMT pathway. Our proposed extensive HhβEMT signal pathway has the potential to an understanding of diffuse-type GC and to the development of new drugs
Inhibitory effect of HGF on invasiveness of aggressive MDA-MB231 breast carcinoma cells, and role of HDACs
Hepatocyte growth factor (HGF), through Met receptor binding, fulfils numerous functions in invasive tumour growth (survival/proliferation, motility, apoptosis), but epigenetic control of gene expression in this process is poorly understood. In HGF-treated breast cancer cells we studied (a) the chemoinvasion towards CXCL12 (ligand of the chemokine-receptor CXCR4) and (b) the mechanistic basis, that is, the transduction pathways that regulate CXCR4-mediated invasion, and the role played by histone deacetylases (HDACs) after blockade with trichostatin A (TSA). In highly invasive and metastatic MDA-MB231 cells HGF had a dual inhibitory effect, reducing spontaneous migration and specific chemoinvasion towards CXCL12, the latter by decreasing CXCR4 transactivation and protein level. After HGF the levels of phosphorylated (therefore active) c-Src and Akt persistently increased, indicating a role of these signal transducers in the HGF-dependent cellular and molecular effects. c-Src wild-type expression vector (Srcwt) increased active c-Src and mimicked the HGF-dependent inhibition of CXCR4 transactivation. Our findings indicate that HDACs participated in the HGF-inhibitory effects. In fact, blockade of HDACs hindered the HGF- and Srcwt-dependent reductions of CXCR4 transactivation and invasiveness, while inhibition of endogenous c-Src was additive with HGF, further reducing specific chemoinvasion. In conclusion, in MDA-MB231 cells HDAC blockade with TSA partly counteracted the HGF-dependent effects through molecular events that included enhancement of the expression of the genes for invasiveness Met and CXCR4 (depending on serum conditions), reduction of endogenous phospho-c-Src/c-Src and phosphoAkt/Akt ratios and triggering of apoptosis. The potential therapeutic use of TSA should take into account the variable aggressiveness of breast carcinoma cells and microenvironment signals such as HGF at the secondary growth site of the tumour. It was interesting that HGF reduced motility and CXCR4 functionality only of MDA-MB231 cells, and not of low-invasive MCF-7 cells, suggesting a mechanism implicated in metastatic cell homing
- β¦