257 research outputs found

    Molecular Tracers of Star Formation Feedback in Nearby Galaxies

    Get PDF
    The energy and momentum injected into the ISM from stars has a drastic effect on the star formation history of a galaxy. This is called feedback. It is responsible for the inefficient collapse of the ISM into stars. The ``Survey of Water and Ammonia in Nearby Galaxies (SWAN) is a survey of molecular line tracers in four nearby galaxies. By using molecular tracers of feedback, we provide insights into the star forming ecosystem of the galaxies NGC 253, IC 342, NGC 6946, and NGC 2146. These galaxies were chosen to span an order of magnitude in star formation rate and a variety of galaxy ecosystems. We have selected the metastable NH3 lines as a temperature tracer of the dense molecular ISM, the 22 GHz H2O (616-523) maser as an indicator of star formation, and the 36 GHz CH3OH (4-14-303) maser which was previously unexplored in the extragalactic context. Observations of these galaxies with the Very Large Array (VLA) provides access to 0.1 to 100 pc scales where we can observe how feedback affects the ISM. We uncover evidence for a uniform two-temperature component distribution of the molecular gas across the central kiloparsec of NGC 253 and IC 342. The temperature distribution does not correlate with any observed feedback effects suggesting that no single effect (supernovae, stellar winds, PDRs, or shocks) dominates. We identify several new water masers associated with star formation across all four galaxies. We also show that extragalactic 36 GHz CH3OH masers are 10\u27s of times more luminous as their Milky Way counterparts, and they are likely related to large scale weak shocks in the dense molecular ISM. The luminosity of both the H2O and CH3OH masers appears to correlate with the local star formation rate. In NGC 253 specifically, we test models of galactic outflows driven by a nuclear starburst with sub-arcsecond observations of NH3(3,3) masers, H2O masers and CH3OH masers. From locations and kinematics of the H2O masers, we uncover evidence for star forming material entrained in the outflow of the galaxy, and provide the first sub-kpc evidence for the receding side of the outflow

    Survey of Water and Ammonia in Nearby galaxies (SWAN): Resolved Ammonia Thermometry, and Water and Methanol Masers in IC 342, NGC 6946 and NGC 2146

    Full text link
    The Survey of Water and Ammonia in Nearby galaxies (SWAN) studies atomic and molecular species across the nuclei of four star forming galaxies: NGC\,253, IC\,342, NGC\,6946, and NGC\,2146. As part of this survey, we present Karl G. Jansky Very Large Array (VLA) molecular line observations of three galaxies: IC\,342, NGC\,6946 and NGC\,2146. NGC\,253 is covered in a previous paper. These galaxies were chosen to span an order of magnitude in star formation rates and to select a variety of galaxy types. We target the metastable transitions of ammonia NH3_{3}(1,1) to (5,5), the 22\,GHz water (H2_2O) (6165236_{16}-5_{23}) transition, and the 36.1\,GHz methanol (CH3_3OH) (41304_{-1}-3_{0}) transition. {We use the NH3_{3}\ metastable lines to perform thermometry of the dense molecular gas.} We show evidence for uniform heating across the central kpc of IC\,342 with two temperature components for the molecular gas, similar to NGC 253,} of 27\,K and 308\,K, and that the dense molecular gas in NGC\,2146 has a temperature <<86 K. We identify two new water masers in IC\,342, and one new water maser in each of NGC\,6946 and NGC\,2146. The two galaxies NGC\,253 and NGC\,2146, with the most vigorous star formation, host H2_2O kilomasers. Lastly, we detect the first 36\,GHz CH3_3OH\ masers in IC\,342 and NGC\,6946. For the four external galaxies the total CH3_3OH\ luminosity in each galaxy suggests a correlation with galactic star formation rate, whereas the morphology of the emission is similar to that of HNCO, a weak shock tracer

    Evidence for coupling of evolved star atmospheres and spiral arms of the milky way

    Get PDF
    It is imperative to map the strength and distribution of feedback in galaxies to understand how feedback affects galactic ecosystems. H2O masers act as indicators of energy injection into the interstellar medium. Our goal is to measure the strength and distribution of feedback traced by water masers in the Milky Way. We identify optical counterparts to H2O masers discovered by the HOPS survey. The distribution and luminosities of H2O masers in the Milky Way are determined using parallax measurements derived from the second Gaia Data Release. We provide evidence of a correlation between evolved stars, as traced by H2O masers, and the spiral structure of the Milky Way, suggesting a link between evolved stars and the Galactic environment

    A Major X-ray Outburst from an Ultraluminous X-Ray Source in M82

    Full text link
    We detected a major X-ray outburst from M82 with a duration of 79 days, an average flux of 5E-11 erg cm^-2 s^-1 in the 2-10 keV band, and strong variability. The X-ray spectrum remained hard throughout the outburst. We obtained a Chandra observation during the outburst that shows that the emission arises from the ultraluminous X-ray source X41.4+60. This source has an unabsorbed flux of (5.4 +/- 0.2)E-11 erg cm^-2 s^-1 in the 0.3-8 keV band, equivalent to an isotropic luminosity of 8.5E40 erg/s. The spectrum is adequately fitted with an absorbed power-law with a photon index of 1.55 +/- 0.05. This photon index is very similar to the value of 1.61 +/- 0.06 measured previously while the flux was (2.64 +/- 0.14)E-11 erg cm^-2 s^-1. Thus, the source appears to remain in the hard state even at the highest flux levels observed. The X-ray spectral and timing data available for X41.4+60 are consistent with the source being in a luminous hard state and a black hole mass in the range of one to a few thousand solar masses.Comment: to appear in ApJ, 7 page

    X-rays from Blue Compact Dwarf Galaxies

    Full text link
    We measured the X-ray fluxes from an optically-selected sample of blue compact dwarf galaxies (BCDs) with metallicities <0.07 and solar distances less than 15 Mpc. Four X-ray point sources were observed in three galaxies, with five galaxies having no detectable X-ray emission. Comparing X-ray luminosity and star formation rate, we find that the total X-ray luminosity of the sample is more than 10 times greater than expected if X-ray luminosity scales with star formation rate according to the relation found for normal-metallicity star-forming galaxies. However, due to the low number of sources detected, one can exclude the hypothesis that the relation of the X-ray binaries to SFR in low-metalicity BCDs is identical to that in normal galaxies only at the 96.6% confidence level. It has recently been proposed that X-ray binaries were an important source of heating and reionization of the intergalactic medium at the epoch of reionization. If BCDs are analogs to unevolved galaxies in the early universe, then enhanced X-ray binary production in BCDs would suggest an enhanced impact of X-ray binaries on the early thermal history of the universe.Comment: 4 pages, to appear in Ap

    The opaque heart of the galaxy IC 860: Analogous protostellar, kinematics, morphology, and chemistry

    Get PDF
    Compact Obscured Nuclei (CONs) account for a significant fraction of the population of luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). These galaxy nuclei are compact, with radii of 10-100 pc, with large optical depths at submm and far-infrared wavelengths, and characterized by vibrationally excited HCN emission. It is not known what powers the large luminosities of the CON host galaxies because of the extreme optical depths towards their nuclei. CONs represent an extreme phase of nuclear growth, hiding either a rapidly accreting supermassive black hole or an abnormal mode of star formation. Regardless of their power source, the CONs allow us to investigate the processes of nuclear growth in galaxies. Here we apply principal component analysis (PCA) tomography to high-resolution (000:06) ALMA observations at frequencies 245 to 265 GHz of the nearby CON (59 Mpc) IC 860. PCA is a technique to unveil correlation in the data parameter space, and we apply it to explore the morphological and chemical properties of species in our dataset. The leading principal components reveal morphological features in molecular emission that suggest a rotating, infalling disk or envelope, and an outflow analogous to those seen in Galactic protostars. One particular molecule of astrochemical interest is methanimine (CH2NH), a precursor to glycine, three transitions of which have been detected towards IC 860.We estimate the average CH2NH column density towards the nucleus of IC 860 to be _1017cm2, with an abundance exceeding 108 relative to molecular hydrogen, using the rotation diagram method and non-LTE radiative transfer models. This CH2NH abundance is consistent with those found in hot cores of molecular clouds in the Milky Way. Our analysis suggests that CONs are an important stage of chemical evolution in galaxies, that are chemically and morphologically similar to Milky Way hot cores

    Short-term changes in ultrasound tomography measures of breast density and treatment-associated endocrine symptoms after tamoxifen therapy

    Get PDF
    Although breast density decline with tamoxifen therapy is associated with greater therapeutic benefit, limited data suggest that endocrine symptoms may also be associated with improved breast cancer outcomes. However, it is unknown whether endocrine symptoms are associated with reductions in breast density after tamoxifen initiation. We evaluated treatment-associated endocrine symptoms and breast density change among 74 women prescribed tamoxifen in a 12-month longitudinal study. Treatment-associated endocrine symptoms and sound speed measures of breast density, assessed via novel whole breast ultrasound tomography (m/s), were ascertained before tamoxifen (T0) and at 1-3 (T1), 4-6 (T2), and 12 months (T3) after initiation. CYP2D6 status was genotyped, and tamoxifen metabolites were measured at T3. Using multivariable linear regression, we estimated mean change in breast density by treatment-associated endocrine symptoms adjusting for age, race, menopausal status, body mass index, and baseline density. Significant breast density declines were observed in women with treatment-associated endocrine symptoms (mean change (95% confidence interval) at T1:-0.26 m/s (-2.17,1.65); T2:-2.12 m/s (-4.02,-0.22); T3:-3.73 m/s (-5.82,-1.63); p-trend = 0.004), but not among women without symptoms (p-trend = 0.18) (p-interaction = 0.02). Similar declines were observed with increasing symptom frequency (p-trends for no symptoms = 0.91; low/moderate symptoms = 0.03; high symptoms = 0.004). Density declines remained among women with detectable tamoxifen metabolites or intermediate/efficient CYP2D6 metabolizer status. Emergent/worsening endocrine symptoms are associated with significant, early declines in breast density after tamoxifen initiation. Further studies are needed to assess whether these observations predict clinical outcomes. If confirmed, endocrine symptoms may be a proxy for tamoxifen response and useful for patients and providers to encourage adherence

    The Molecular Outflow in NGC 253 at a Resolution of Two Parsecs

    Get PDF
    We present 0.'' 15 (similar to 2.5 pc) resolution ALMA CO(3-2) observations of the starbursting center in NGC 253. Together with archival ALMA CO(1-0) and CO(2-1) data, we decompose the emission into disk and nondisk components. We find similar to 7%-16% of the CO luminosity to be associated with the nondisk component (1.2-4.2 x 10(7) K km s(-1) pc(2)). The total molecular gas mass in the center of NGC 253 is similar to 3.6 x 10(8) M-circle dot with similar to 0.5 x 10(8) M-circle dot (similar to 15%) in the nondisk component. These measurements are consistent across independent mass estimates through three CO transitions. The high-resolution CO(3-2) observations allow us to identify the molecular outflow within the nondisk gas. Using a starburst conversion factor, we estimate the deprojected molecular mass outflow rate, kinetic energy, and momentum in the starburst of NGC 253. The deprojected molecular mass outflow rate is in the range of similar to 14-39 M-circle dot yr(-1) with an uncertainty of 0.4 dex. The large spread arises due to different interpretations of the kinematics of the observed gas while the errors are due to unknown geometry. The majority of this outflow rate is contributed by distinct outflows perpendicular to the disk, with a significant contribution by diffuse molecular gas. This results in a mass-loading factor eta = (M) over dot(out)/(M) over dot(SFR) in the range eta similar to 8-20 for gas ejected out to similar to 300 pc. We find the kinetic energy of the outflow to be similar to 2.5-4.5 x 10(54) erg and a typical error of similar to 0.8 dex, which is similar to 0.1% of the total or similar to 8% of the kinetic energy supplied by the starburst. The outflow momentum is 4.8-8.7 x 10(8) M-circle dot km s(-1) (similar to 0.5 dex error) or similar to 2.5%-4% of the kinetic momentum released into the ISM by the feedback. The unknown outflow geometry and launching sites are the primary sources of uncertainty in this study.Peer reviewe

    The Morpho-kinematic Architecture of Super Star Clusters in the Center of NGC 253

    Get PDF
    The center of the nearby galaxy NGC 253 hosts a population of more than a dozen super star clusters (SSCs) that are still in the process of forming. The majority of the star formation of the burst is concentrated in these SSCs, and the starburst is powering a multiphase outflow from the galaxy. In this work, we measure the 350 GHz dust continuum emission toward the center of NGC 253 at 47 mas (0.8 pc) resolution using data from the Atacama Large Millimeter/submillimeter Array. We report the detection of 350 GHz (dust) continuum emission in the outflow for the first time, associated with the prominent South-West streamer. In this feature, the dust emission has a width of approximate to 8 pc, is located at the outer edge of the CO emission, and corresponds to a molecular gas mass of similar to(8-17)x10(6) M (circle dot). In the starburst nucleus, we measure the resolved radial profiles, sizes, and molecular gas masses of the SSCs. Compared to previous work at the somewhat lower spatial resolution, the SSCs here break apart into smaller substructures with radii 0.4-0.7 pc. In projection, the SSCs, dust, and dense molecular gas appear to be arranged as a thin, almost linear, structure roughly 155 pc in length. The morphology and kinematics of this structure can be well explained as gas following x (2) orbits at the center of a barred potential. We constrain the morpho-kinematic arrangement of the SSCs themselves, finding that an elliptical, angular-momentum-conserving ring is a good description of both the morphology and kinematics of the SSCs
    corecore