698 research outputs found

    Scaling the neutral atom Rydberg gate quantum computer by collective encoding in Holmium atoms

    Full text link
    We discuss a method for scaling a neutral atom Rydberg gate quantum processor to a large number of qubits. Limits are derived showing that the number of qubits that can be directly connected by entangling gates with errors at the 10−310^{-3} level using long range Rydberg interactions between sites in an optical lattice, without mechanical motion or swap chains, is about 500 in two dimensions and 7500 in three dimensions. A scaling factor of 60 at a smaller number of sites can be obtained using collective register encoding in the hyperfine ground states of the rare earth atom Holmium. We present a detailed analysis of operation of the 60 qubit register in Holmium. Combining a lattice of multi-qubit ensembles with collective encoding results in a feasible design for a 1000 qubit fully connected quantum processor.Comment: 6 figure

    Langmuir-Schaefer films of a polyaniline-gold nanoparticle composite material for applications in organic memristive devices

    Get PDF
    Langmuir-Shaefer films of a polyaniline-gold nanoparticle composite were fabricated and characterized. The thickness of each deposited monolayer, determined with AFM, was found to be about 0.8 nm. The film morphology was studied by SEM, revealing the presence of embedded spherical-shaped gold nanoparticles of about 5-10 nm in diameter. The fabricated films were used as the active channel of the organic memristor. Its electric characterisation has revealed new phenomena, such as an increased working voltage range and sigmoidal voltage current characteristics that were connected to the charge trappin

    Elastic ppˉ\rm{p\bar p} Scattering Amplitude at 1.8 TeV and Determination of Total Cross Section

    Full text link
    The data on ppˉ\mathrm{\bar p} elastic scattering at 1.8 and 1.96 TeV are analysed in terms of real and imaginary amplitudes, in a treatment with high accuracy, covering the whole t-range and satisfying the expectation of dispersion relation for amplitudes and for slopes. A method is introduced for determination of the total cross section and the other forward scattering parameters and to check compatibility of E-710, CDF and the recent D0 data. Slopes BRB_R and BI B_I of the real and imaginary amplitudes, treated as independent quantities, influence the amplitudes in the whole t-range and are important for the determination of the total cross section. The amplitudes are fully constructed, and a prediction is made of a marked dip in dσ/dt d\sigma/dt in the ∣t∣|t| range 3 - 5 GeV2^2 due to the universal contribution of the process of three gluon exchange.Comment: 22 pages, 12 figures, 2 table

    Renormalization Group Theory for a Perturbed KdV Equation

    Full text link
    We show that renormalization group(RG) theory can be used to give an analytic description of the evolution of a perturbed KdV equation. The equations describing the deformation of its shape as the effect of perturbation are RG equations. The RG approach may be simpler than inverse scattering theory(IST) and another approaches, because it dose not rely on any knowledge of IST and it is very concise and easy to understand. To the best of our knowledge, this is the first time that RG has been used in this way for the perturbed soliton dynamics.Comment: 4 pages, no figure, revte

    Three- and Four-Body Scattering Calculations including the Coulomb Force

    Full text link
    The method of screening and renormalization for including the Coulomb interaction in the framework of momentum-space integral equations is applied to the three- and four-body nuclear reactions. The Coulomb effect on the observables and the ability of the present nuclear potential models to describe the experimental data is discussed.Comment: Proceedings of the Critical Stability workshop, Erice, Sicily, October 2008, to be published in Few-Body System

    Formation of Nanoclusters and Nanopillars in Nonequilibrium Surface Growth for Catalysis Applications: Growth by Diffusional Transport of Matter in Solution Synthesis

    Full text link
    Growth of nanoclusters and nanopillars is considered in a model of surface deposition of building blocks (atoms) diffusionally transported from solution to the forming surface structure. Processes of surface restructuring are also accounted for in the model, which then yields morphologies of interest in catalysis applications. Kinetic Monte Carlo numerical approach is utilized to explore the emergence of FCC-symmetry surface features in Pt-type metal nanostructures. Available results exemplify evaluation of the fraction of the resulting active sites with desirable properties for catalysis, such as (111)-like coordination, as well as suggest optimal growth regimes

    Non-trivial Soliton Scattering in Planar Integrable Systems

    Full text link
    The behavior of solitons in integrable theories is strongly constrained by the integrability of the theory, that is by the existence of an infinite number of conserved quantities that these theories are known to possess. As a result the soliton scattering of such theories are expected to be trivial (with no change of direction, velocity or shape). In this paper we present an extended review on soliton scattering of two spatial dimensional integrable systems which have been derived as dimensional reductions of the self-dual Yang-Mills-Higgs equations and whose scattering properties are highly non-trivial.Comment: 25 pages + 9 Figures, Review Paper to appear in International Journal of Modern Physics
    • …
    corecore