668 research outputs found

    Scaling the neutral atom Rydberg gate quantum computer by collective encoding in Holmium atoms

    Full text link
    We discuss a method for scaling a neutral atom Rydberg gate quantum processor to a large number of qubits. Limits are derived showing that the number of qubits that can be directly connected by entangling gates with errors at the 10310^{-3} level using long range Rydberg interactions between sites in an optical lattice, without mechanical motion or swap chains, is about 500 in two dimensions and 7500 in three dimensions. A scaling factor of 60 at a smaller number of sites can be obtained using collective register encoding in the hyperfine ground states of the rare earth atom Holmium. We present a detailed analysis of operation of the 60 qubit register in Holmium. Combining a lattice of multi-qubit ensembles with collective encoding results in a feasible design for a 1000 qubit fully connected quantum processor.Comment: 6 figure

    A Seriuos Academic Work

    Get PDF
    С.А. Кравченко «Социологический толковый англо-русский словарь». М.: МГИМО(У) МИД России, 2012. 690 с. (Серия «Энциклопедии и словари МГИМО(У)»)

    Formation of Nanoclusters and Nanopillars in Nonequilibrium Surface Growth for Catalysis Applications: Growth by Diffusional Transport of Matter in Solution Synthesis

    Full text link
    Growth of nanoclusters and nanopillars is considered in a model of surface deposition of building blocks (atoms) diffusionally transported from solution to the forming surface structure. Processes of surface restructuring are also accounted for in the model, which then yields morphologies of interest in catalysis applications. Kinetic Monte Carlo numerical approach is utilized to explore the emergence of FCC-symmetry surface features in Pt-type metal nanostructures. Available results exemplify evaluation of the fraction of the resulting active sites with desirable properties for catalysis, such as (111)-like coordination, as well as suggest optimal growth regimes

    Spectrum Estimation of Density Operators with Alkaline-Earth Atoms

    Get PDF
    We show that Ramsey spectroscopy of fermionic alkaline-earth atoms in a square-well trap provides an efficient and accurate estimate for the eigenspectrum of a density matrix whose n copies are stored in the nuclear spins of n such atoms. This spectrum estimation is enabled by the high symmetry of the interaction Hamiltonian, dictated, in turn, by the decoupling of the nuclear spin from the electrons and by the shape of the square-well trap. Practical performance of this procedure and its potential applications to quantum computing and time keeping with alkaline-earth atoms are discussed

    Three- and Four-Body Scattering Calculations including the Coulomb Force

    Full text link
    The method of screening and renormalization for including the Coulomb interaction in the framework of momentum-space integral equations is applied to the three- and four-body nuclear reactions. The Coulomb effect on the observables and the ability of the present nuclear potential models to describe the experimental data is discussed.Comment: Proceedings of the Critical Stability workshop, Erice, Sicily, October 2008, to be published in Few-Body System
    corecore