734 research outputs found
Scintillation reduction for combined Gaussian-vortex beam propagating through turbulent atmosphere
We numerically examine the spatial evolution of the structure of coherent and
partially coherent laser beams (PCBs), including the optical vortices,
propagating in turbulent atmospheres. The influence of beam fragmentation and
wandering relative to the axis of propagation (z-axis) on the value of the
scintillation index (SI) of the signal at the detector is analyzed. A method
for significantly reducing the SI, by averaging the signal at the detector over
a set of PCBs, is described. This novel method is to generate the PCBs by
combining two laser beams - Gaussian and vortex beams, with different
frequencies (the difference between these two frequencies being significantly
smaller than the frequencies themselves). In this case, the SI is effectively
suppressed without any high-frequency modulators.Comment: 13 pages, 8 figure
Stability and reproducibility of solid electrolyte amperometry sensors at the analysis of hydrogen in nitrogen-containing gas mixtures
This paper illustrates the results of long-term tests on the stability of the output signal of the solid electrolyte amperometry sensor when measuring the hydrogen concentration in the H2 + N2 gaseous mixture. The obtained experimental data verify the stability and reproducibility of the sensor output signal for hydrogen concentration measurements in the nitrogen-containing gaseous mixture during 8000 h of operation. The output signal drift, i.e., the limiting current value, was insignificant, less than ± 5 %. The sensor operation was performed at 3 temperature shifts with different time intervals; these changes did not have any impact either on the sensor integrity or on its operation. The structure of the solid electrolyte sensor, intermediate solid electrolyte / electrode layer and electrodes did not undergo any significant changes during operation. The dynamic characteristics of the sensor, the response time in particular, remained stable during the operation.https://doi.org/10.15826/elmattech.2024.3.02
Excitation energies, hyperfine constants, E1, E2, M1 transition rates, and lifetimes of (6s2)nl states in Tl I and Pb II
Energies of np (n=6-9), ns (n=7-9), nd (n=6-8), and nf (n=5-6) states in Tl I
and Pb II are obtained using relativistic many-body perturbation theory.
Reduced matrix elements, oscillator strengths, transition rates, and lifetimes
are determined for the 72 possible electric-dipole transitions.
Electric-quadrupole and magnetic-dipole matrix elements are evaluated to obtain
np(3/2) - mp(1/2) (n,m=6,7) transition rates. Hyperfine constants A are
evaluated for a number of states in 205Tl. First-, second-, third-, and
all-order corrections to the energies and matrix elements and first- and
second-order Breit corrections to energies are calculated. In our
implementation of the all-order method, single and double excitations of
Dirac-Fock wave functions are included to all orders in perturbation theory.
These calculations provide a theoretical benchmark for comparison with
experiment and theory.Comment: twelve tables, no figure
Topological charge and angular momentum of light beams carrying optical vortices
We analyze the properties of light beams carrying phase singularities, or optical vortices. The transformations of topological charge during free-space propagation of a light wave, which is a combination of a Gaussian beam and a multiple charged optical vortex within a Gaussian envelope, are studied both in theory and experiment. We revise the existing knowledge about topological charge conservation, and demonstrate possible scenarios where additional vortices appear or annihilate during free propagation of such a combined beam. Coaxial interference of optical vortices is also analyzed, and the general rule for angular-momentum density distribution in a combined beam is established. We show that, in spite of any variation in the number of vortices in a combined beam, the total angular momentum is constant during the propagation. [S1050-2947(97)09910-1]
Reduction of laser intensity scintillations in turbulent atmospheres using time averaging of a partially coherent beam
We demonstrate experimentally and numerically that the application of a
partially coherent beam (PCB) in combination with time averaging leads to a
significant reduction in the scintillation index. We use a simplified
experimental approach in which the atmospheric turbulence is simulated by a
phase diffuser. The role of the speckle size, the amplitude of the phase
modulation, and the strength of the atmospheric turbulence are examined. We
obtain good agreement between our numerical simulations and our experimental
results. This study provides a useful foundation for future applications of
PCB-based methods of scintillation reduction in physical atmospheres.Comment: 18 pages, 14 figure
Three-body correlations in direct reactions: Example of Be populated in reaction
The Be continuum states were populated in the charge-exchange reaction
H(Li,Be) collecting very high statistics data ( events) on the three-body ++ correlations. The
Be excitation energy region below MeV is considered, where the
data are dominated by contributions from the and states. It is
demonstrated how the high-statistics few-body correlation data can be used to
extract detailed information on the reaction mechanism. Such a derivation is
based on the fact that highly spin-aligned states are typically populated in
the direct reactions.Comment: submitted to Physical Review
New insight into the low-energy He spectrum
The spectrum of He was studied by means of the He(,)He
reaction at a lab energy of 25 MeV/n and small center of mass (c.m.) angles.
Energy and angular correlations were obtained for the He decay products by
complete kinematical reconstruction. The data do not show narrow states at
1.3 and 2.4 MeV reported before for He. The lowest resonant
state of He is found at about 2 MeV with a width of 2 MeV and is
identified as . The observed angular correlation pattern is uniquely
explained by the interference of the resonance with a virtual state
(limit on the scattering length is obtained as fm), and with
the resonance at energy MeV.Comment: 5 pages, 4 figures, 2 table
Thermal Raman study of Li4Ti5O12 and discussion about the number of its characteristic bands
Lithium battery industry is booming, and this fast growth should be supported
by developing industry friendly tools to control the quality of positive and
negative electrode materials. Raman spectroscopy was shown to be a cost
effective and sensitive instrument to study defects and heterogeneities in
lithium titanate, popular negative electrode material for high power
applications, but there are still some points to be clarified. This work
presents a detailed thermal Raman study for lithium titanate and discusses the
difference of the number of predicted and experimentally observed Raman-active
bands. The low temperature study and the analysis of thermal shifts of bands
positions during heating let us to conclude about advantages of the proposed
approach with surplus bands and recommend using shifts of major band to
estimate the sample heating
- …