24 research outputs found

    Definition and classification for adverse events following spinal and peripheral joint manipulation and mobilization: A scoping review

    Full text link
    INTRODUCTION Spinal and peripheral joint manipulation and mobilization are interventions used by many healthcare providers to manage musculoskeletal conditions. Although there are many reports of adverse events (or undesirable outcomes) following such interventions, there is no common definition for an adverse event or clarity on any severity classification. This impedes advances of patient safety initiatives and practice. This scoping review mapped the evidence of adverse event definitions and classification systems following spinal and peripheral joint manipulation and mobilization for musculoskeletal conditions in adults. METHODS An electronic search of the following databases was performed from inception to February 2021: MEDLINE, EMBASE, CINAHL, Scopus, AMED, ICL, PEDro, Cochrane Library, Open Grey and Open Theses and Dissertations. Studies including adults (18 to 65 years old) with a musculoskeletal condition receiving spinal or peripheral joint manipulation or mobilization and providing an adverse event definition and/or classification were included. All study designs of peer-reviewed publications were considered. Data from included studies were charted using a standardized data extraction form and synthesised using narrative analysis. RESULTS From 8248 identified studies, 98 were included in the final synthesis. A direct definition for an adverse event and/or classification system was provided in 69 studies, while 29 provided an indirect definition and/or classification system. The most common descriptors to define an adverse event were causality, symptom severity, onset and duration. Twenty-three studies that provided a classification system described only the end anchors (e.g., mild/minor and/or serious) of the classification while 26 described multiple categories (e.g., moderate, severe). CONCLUSION A vast array of terms, definition and classification systems were identified. There is no one common definition or classification for adverse events following spinal and peripheral joint manipulation and mobilization. Findings support the urgent need for consensus on the terms, definition and classification system for adverse events related to these interventions

    Spinal mobilization force-time characteristics:A scoping literature review

    Get PDF
    Abstract Background Spinal mobilization (SMob) is often included in the conservative management of spinal pain conditions as a recommended and effective treatment. While some studies quantify the biomechanical (kinetic) parameters of SMob, interpretation of findings is difficult due to poor reporting of methodological details. The aim of this study was to synthesise the literature describing force-time characteristics of manually applied SMob. Methods This study is reported in accordance with the Preferred Reporting Items for Scoping Reviews (PRISMA-ScR) statement. Databases were searched from inception to October 2022: MEDLINE (Ovid), Embase, CINAHL, ICL, PEDro and Cochrane Library. Data were extracted and reported descriptively for the following domains: general study characteristics, number of and characteristics of individuals who delivered/received SMob, region treated, equipment used and force-time characteristics of SMob. Results There were 7,607 records identified and of these, 36 (0.5%) were included in the analysis. SMob was delivered to the cervical spine in 13 (36.1%), the thoracic spine in 3 (8.3%) and the lumbopelvic spine in 18 (50.0%) studies. In 2 (5.6%) studies, spinal region was not specified. For SMob applied to all spinal regions, force-time characteristics were: peak force (0-128N); duration (10-120s); frequency (0.1–4.5Hz); and force amplitude (1-102N). Conclusions This study reports considerable variability of the force-time characteristics of SMob. In studies reporting force-time characteristics, SMob was most frequently delivered to the lumbar and cervical spine of humans and most commonly peak force was reported. Future studies should focus on the detailed reporting of force-time characteristics to facilitate the investigation of clinical dose-response effects

    Understanding inter-individual variability of experimental pain habituation and conditioned pain modulation in healthy individuals

    Get PDF
    Although reduced experimental pain habituation is proposed as a proxy of diminished endogenous pain modulatory capacity in chronic pain, prior studies show contradictory findings. Even across healthy participants, pain habituation varies substantially, which may relate to another measure of endogenous pain modulation, i.e., conditioned pain modulation (CPM). Hence, this study investigated the relationship between pain habituation and CPM. Pain habituation was assessed in 45 healthy participants between two blocks of 15-20 contact-heat stimuli applied to the hand. Habituation of subjective pain ratings and objective neurophysiological readouts (contact-heat evoked potential (CHEP) and palmar sympathetic skin response (SSR)) was investigated. CPM was assessed by comparing heat pain thresholds before and after hand immersion in a noxious cold (9 °C) and lukewarm water bath (32 °C, to control for repeated measures effects). Pain habituation showed a large variability, with subjective but not objective pain habituation correlating with cold-induced CPM effects (r = 0.50; p = 0.025). This correlation was not observed for 'true' CPM effects (corrected for repeated measures effects) nor for CPM effects induced by a lukewarm water bath. These findings suggest that the observed variability in subjective pain habituation may be influenced by both descending endogenous pain modulation and peripheral adaptation processes associated with repeated measures. Objective pain habituation readouts, i.e., CHEPs and SSRs, capture different, complementary aspects of endogenous pain modulation

    Sensory phenotypes in complex regional pain syndrome and chronic low back pain-indication of common underlying pathomechanisms

    Get PDF
    INTRODUCTION First-line pain treatment is unsatisfactory in more than 50% of chronic pain patients, likely because of the heterogeneity of mechanisms underlying pain chronification. OBJECTIVES This cross-sectional study aimed to better understand pathomechanisms across different chronic pain cohorts, regardless of their diagnoses, by identifying distinct sensory phenotypes through a cluster analysis. METHODS We recruited 81 chronic pain patients and 63 age-matched and sex-matched healthy controls (HC). Two distinct chronic pain cohorts were recruited, ie, complex regional pain syndrome (N = 20) and low back pain (N = 61). Quantitative sensory testing (QST) was performed in the most painful body area to investigate somatosensory changes related to clinical pain. Furthermore, QST was conducted in a pain-free area to identify remote sensory alterations, indicating more widespread changes in somatosensory processing. RESULTS Two clusters were identified based on the QST measures in the painful area, which did not represent the 2 distinct pain diagnoses but contained patients from both cohorts. Cluster 1 showed increased pain sensitivities in the painful and control area, indicating central sensitization as a potential pathomechanism. Cluster 2 showed a similar sensory profile as HC in both tested areas. Hence, either QST was not sensitive enough and more objective measures are needed to detect sensitization within the nociceptive neuraxis or cluster 2 may not have pain primarily because of sensitization, but other factors such as psychosocial ones are involved. CONCLUSION These findings support the notion of shared pathomechanisms irrespective of the pain diagnosis. Conversely, different mechanisms might contribute to the pain of patients with the same diagnosis

    Novel neurophysiological evidence for preserved pain habituation across chronic pain conditions.

    Get PDF
    OBJECTIVE The present study aimed to investigate whether subjective and objective measures of pain habituation can be used as potential markers for central sensitization across various chronic pain patients. METHODS Two blocks of contact-heat stimuli were applied to a non-painful area in 93 chronic pain patients (low back pain, neuropathic pain, and complex regional pain syndrome) and 60 healthy controls (HC). Habituation of pain ratings, contact-heat evoked potentials (CHEP), and sympathetic skin responses (SSR) was measured. RESULTS There was no significant difference in any measure of pain habituation between patients and HC. Even patients with apparent clinical signs of central sensitization showed no reduced pain habituation. However, prolonged baseline CHEP and SSR latencies (stimulation block 1) were found in patients compared to HC (CHEP: Δ-latency = 23 ms, p = 0.012; SSR: Δ-latency = 100 ms, p = 0.022). CONCLUSION Given the performed multimodal neurophysiological testing protocol, we provide evidence indicating that pain habituation may be preserved in patients with chronic pain and thereby be of limited use as a sensitive marker for central sensitization. These results are discussed within the framework of the complex interactions between pro- and antinociceptive mechanism as well as methodological issues. The prolonged latencies of CHEP and SSR after stimulation in non-painful areas may indicate subclinical changes in the integrity of thermo-nociceptive afferents, or a shift towards antinociceptive activity. This shift could potentially affect the relay of ascending signals. SIGNIFICANCE Our findings challenge the prevailing views in the literature and may encourage further investigations into the peripheral and central components of pain habituation, using advanced multimodal neurophysiological techniques

    Sensory phenotypes in complex regional pain syndrome and chronic low back pain-indication of common underlying pathomechanisms.

    Get PDF
    INTRODUCTION First-line pain treatment is unsatisfactory in more than 50% of chronic pain patients, likely because of the heterogeneity of mechanisms underlying pain chronification. OBJECTIVES This cross-sectional study aimed to better understand pathomechanisms across different chronic pain cohorts, regardless of their diagnoses, by identifying distinct sensory phenotypes through a cluster analysis. METHODS We recruited 81 chronic pain patients and 63 age-matched and sex-matched healthy controls (HC). Two distinct chronic pain cohorts were recruited, ie, complex regional pain syndrome (N = 20) and low back pain (N = 61). Quantitative sensory testing (QST) was performed in the most painful body area to investigate somatosensory changes related to clinical pain. Furthermore, QST was conducted in a pain-free area to identify remote sensory alterations, indicating more widespread changes in somatosensory processing. RESULTS Two clusters were identified based on the QST measures in the painful area, which did not represent the 2 distinct pain diagnoses but contained patients from both cohorts. Cluster 1 showed increased pain sensitivities in the painful and control area, indicating central sensitization as a potential pathomechanism. Cluster 2 showed a similar sensory profile as HC in both tested areas. Hence, either QST was not sensitive enough and more objective measures are needed to detect sensitization within the nociceptive neuraxis or cluster 2 may not have pain primarily because of sensitization, but other factors such as psychosocial ones are involved. CONCLUSION These findings support the notion of shared pathomechanisms irrespective of the pain diagnosis. Conversely, different mechanisms might contribute to the pain of patients with the same diagnosis

    Manual and instrument applied cervical manipulation for mechanical neck pain : a randomized controlled trial

    No full text
    Objective: The purpose of this study was to compare the effects of 2 different cervical manipulation techniques for mechanical neck pain (MNP). Methods: Participants with MNP of at least 1 month's duration (n = 65) were randomly allocated to 3 groups: (1) stretching (control), (2) stretching plus manually applied manipulation (MAM), and (3) stretching plus instrument-applied manipulation (IAM). MAM consisted of a single high-velocity, low-amplitude cervical chiropractic manipulation, whereas IAM involved the application of a single cervical manipulation using an (Activator IV) adjusting instrument. Preintervention and postintervention measurements were taken of all outcomes measures. Pain was the primary outcome and was measured using visual analogue scale and pressure pain thresholds. Secondary outcomes included cervical range of motion, hand grip-strength, and wrist blood pressure. Follow-up subjective pain scores were obtained via telephone text message 7 days postintervention. Results: Subjective pain scores decreased at 7-day follow-up in the MAM group compared with control (P = .015). Cervical rotation bilaterally (ipsilateral: P = .002; contralateral: P = .015) and lateral flexion on the contralateral side to manipulation (P = .001) increased following MAM. Hand grip-strength on the contralateral side to manipulation (P = .013) increased following IAM. No moderate or severe adverse events were reported. Mild adverse events were reported on 6 occasions (control, 4; MAM, 1; IAM, 1). Conclusion: This study demonstrates that a single cervical manipulation is capable of producing immediate and short-term benefits for MNP. The study also demonstrates that not all manipulative techniques have the same effect and that the differences may be mediated by neurological or biomechanical factors inherent to each technique.11 page(s

    Differences in force-time parameters and electromyographic characteristics of two high-velocity, low-amplitude spinal manipulations following one another in quick succession

    No full text
    Abstract Background Spinal manipulative therapy is an effective treatment for neck pain. However, the mechanisms underlying its clinical efficacy are not fully understood. Previous studies have not systematically compared force-time parameters and electromyographic responses associated with spinal manipulation. In this study, force-time parameters and electromyographic characteristics associated with multiple manual high-velocity, low-amplitude cervical and upper thoracic spinal manipulations were investigated. The purpose of this analysis was to compare the force-time parameters and electromyographic characteristics between two spinal manipulations delivered following one another in quick succession if the first thrust was not associated with an audible cavitation. Methods Nine asymptomatic and eighteen symptomatic participants received six Diversified-style spinal manipulations to the cervical and upper thoracic spines during data collected February 2018 to September 2019. Peak force, rate of force application and thrust duration were measured using a pressure pad. Bipolar surface electrodes were used to measure the electromyographic responses and reflex delay times in sixteen neck, back and limb outlet muscles bilaterally. Differences in force-time parameters and electromyographic data were analyzed between the first and second thrust. Results Fifty-two spinal manipulations were included in this analysis. Peak force was greater (p < 0.001) and rate of force application faster (p < 0.001) in the second thrust. Furthermore, peak electromyographic responses were higher following the second thrust in asymptomatic (p < 0.001) and symptomatic (p < 0.001) subjects. Also, electromyographic delays were shorter in the symptomatic compared to the asymptomatic participants for the second thrust (p = 0.039). There were no adverse patient events. Conclusion When a second manipulation was delivered because there was not audible cavitation during the first thrust, the second thrust was associated with greater treatment forces and faster thrust rates. Peak electromyographic responses were greater following the second thrust

    Reflex Responses of Neck, Back, and Limb Muscles to High-Velocity, Low-Amplitude Manual Cervical and Upper Thoracic Spinal Manipulation of Asymptomatic Individuals—A Descriptive Study

    No full text
    Objective: The purpose of this research was to determine the extent of reflex responses after spinal manipulative therapy (SMT) of the cervical and upper thoracic spine. Methods: Eleven asymptomatic participants received 6 commonly used SMTs to the cervical and upper thoracic spine. Bipolar surface electromyography electrodes were used to measure reflex responses of 16 neck, back, and proximal limb muscles bilaterally. The percentage of occurrence and the extent of reflex responses of these muscles were determined. Results: Reflex responses after cervical SMT were typically present in all neck and most back muscles, whereas responses in the outlets to the arm and leg were less frequent. This trend was similar, although decreased in magnitude, after thoracic SMT. Conclusion: Reflex responses were greatest after upper cervical SMT and lowest with thoracic SMT

    Spinal manipulation characteristics: a scoping literature review of force-time characteristics

    Get PDF
    Background Spinal manipulation (SM) is a recommended and effective treatment for musculoskeletal disorders. Biomechanical (kinetic) parameters (e.g. preload/peak force, rate of force application and thrust duration) can be measured during SM, quantifying the intervention. Understanding these force-time characteristics is the first step towards identifying possible active ingredient/s responsible for the clinical effectiveness of SM. Few studies have quantified SM force-time characteristics and with considerable heterogeneity evident, interpretation of findings is difficult. The aim of this study was to synthesise the literature describing force-time characteristics of manual SM. Methods This scoping literature review is reported following the Preferred Reporting Items for Scoping Reviews (PRISMA-ScR) statement. Databases were searched from inception to October 2022: MEDLINE (Ovid), Embase, CINAHL, ICL, PEDro and Cochrane Library. The following search terms and their derivatives were adapted for each platform: spine, spinal, manipulation, mobilization or mobilisation, musculoskeletal, chiropractic, osteopathy, physiotherapy, naprapathy, force, motor skill, biomechanics, dosage, dose-response, education, performance, psychomotor, back, neck, spine, thoracic, lumbar, pelvic, cervical and sacral. Data were extracted and reported descriptively for the following domains: general study characteristics, number of and characteristics of individuals who delivered/received SM, region treated, equipment used and force-time characteristics of SM. Results Of 7,607 records identified, 66 (0.9%) fulfilled the eligibility criteria and were included in the analysis. Of these, SM was delivered to the cervical spine in 12 (18.2%), the thoracic spine in 40 (60.6%) and the lumbopelvic spine in 19 (28.8%) studies. In 6 (9.1%) studies, the spinal region was not specified. For SM applied to all spinal regions, force-time characteristics were: preload force (range: 0-671N); peak force (17-1213N); rate of force application (202-8700N/s); time to peak thrust force (12-938ms); and thrust duration (36-2876ms). Conclusions Considerable variability in the reported kinetic force-time characteristics of SM exists. Some of this variability is likely due to differences in SM delivery (e.g. different clinicians) and the measurement equipment used to quantify force-time characteristics. However, improved reporting in certain key areas could facilitate more sophisticated syntheses of force-time characteristics data in the future. Such syntheses could provide the foundation upon which dose-response estimates regarding the clinical effectiveness of SM are made
    corecore