93 research outputs found

    GEP 3750 Data Acquisition and Integration Methods for GIS Analysis

    Get PDF
    The techniques and science of data acquisition and creation for spatial analysis in a geographic information system (GIS); includes field data collection. Students will be instructed in the use GPS devices, mobile GIS, workstation GIS, as well as data from other sources including remotely sensed data. The full course site is available at https://gep3750.commons.gc.cuny.edu/

    Syllabus GEO101

    Get PDF
    Syllabus for courses Dynamic Earth (undergraduate course): GEO 101-81 and Earth Processes (graduate course): GEO 501-81. Open textbook used in both courses linked in the syllabus and available at the following link: https://pressbooks.cuny.edu/gorokhovich

    Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points – A Review

    Get PDF
    Interferometric Synthetic Aperture Radar (InSAR) is a new measurement technology, making use of the phase information contained in the Synthetic Aperture Radar (SAR) images. InSAR has been recognized as a potential tool for the generation of digital elevation models (DEMs) and the measurement of ground surface deformations. However, many critical factors affect the quality of InSAR data and limit its applications. One of the factors is InSAR data processing, which consists of image co-registration, interferogram generation, phase unwrapping and geocoding. The co-registration of InSAR images is the first step and dramatically influences the accuracy of InSAR products. In this paper, the principle and processing procedures of InSAR techniques are reviewed. One of important factors, tie points, to be considered in the improvement of the accuracy of InSAR image co-registration are emphatically reviewed, such as interval of tie points, extraction of feature points, window size for tie point matching and the measurement for the quality of an interferogram

    An Overland Flood Model for Geographical Information Systems

    No full text
    A variety of flood models and commercial flood simulation software are provided in the literature, with different accuracies and precisions changing from coarse to fine, depending on model structure and detailed descriptions of basin and hydrologic properties. These models generally focus on river processes, taking overland processes as inputs of 1D or 2D hydrodynamic or hydrologic river flow models. Due to the discrete structure of overland flow and unknown-dynamic boundary conditions, such classical approaches are not cable of fast and reliable spatio–temporal estimations for overland flows, and require detailed and well-organized spatial data that cannot be immediately obtained during an emergency. A spatially-distributed Geographical Information Systems (GIS) based flood model is developed in this study to simulate overland floods, using cellular automata principles. GIS raster cells are considered hydrologic homogeneous areas throughout which hydrologic properties remain constant. Hydrodynamic flow principles, conservations of mass, momentum and energy are applied at pixel level to simulate floodwaters. The proposed GIS model is capable of directly manipulating spatio–temporal pixel level data (e.g., topography, precipitation, infiltration, surface roughness etc.) for modeling of rainfall-induced overland floods; therefore, it can provide fast, temporal and spatial flood depth estimations as well as maximum flood depths and times of concentration for all pixels throughout a study area. The model is quite simple and easy to apply via easily creatable GIS input layers, and is thus very convenient for preliminary engineering applications that need quick and fast response. Its main advantage is that it does not need a predefined flood boundary and boundary conditions. This advantage is especially valuable for coastal plains where delineation of a basin is generally too difficult. Floodwaters of Cyclone Nargis/Myanmar were simulated to test the model. Sensitivity analyses were applied to evaluate the effects of the model parameters (i.e., surface roughness and infiltration rates) on simulation results. The study shows that the proposed GIS model can be readily applied for the fast and inexpensive modeling of rainfall caused floods in areas where flood boundaries and boundary conditions cannot be clearly identified

    Post-Younger Dryas deglaciation of the Greenland western margin as revealed by spatial analysis of lakes

    No full text
    Lake shapes and their spatial distribution are important geomorphological indicators in previously glaciated areas. Their shapes are influenced by the underlying geological structure and processes of glacial sediment deposition or erosion. Since these processes act on large areas, distribution of lakes can reflect the intensity of glacial erosional/depositional processes and their spatial extent. Landsat imagery was used to extract lake outlines from a selected pilot-study area on the widest ice-free coastal margin of the south-western Greenland north of Kangerlussuaq. Analysis included image classification and spatial analysis of lakes with elevation data using geographic information system (GIS) tools. A morphometric index was applied to extract kettle lakes as indicators of a specific glacial process – ice stagnation. Analysis of their spatial distribution helped in the reconstruction of glacial dynamics in formerly glaciated terrain. Our results show that spatial lake distribution combined with elevation analysis can be used to identify zones of glacial erosion and deposition. The highest concentrations of lakes within the study area occupy the elevation range between 164 and 361 m above sea level (a.s.l.). This zone can be identified as an area where intensive glacial erosion took place in the past. The widespread distribution of modeled kettle lake features within the same elevation range and across the study area suggests that the last deglaciation process was accompanied by abandonment of blocks of stagnant ice. This conclusion is supported by surface exposure ages obtained in the same study area and published elsewhere. Copyright © 2009 John Wiley & Sons, Ltd

    Post-Younger Dryas deglaciation of the Greenland western margin as revealed by spatial analysis of lakes

    No full text
    Lake shapes and their spatial distribution are important geomorphological indicators in previously glaciated areas. Their shapes are influenced by the underlying geological structure and processes of glacial sediment deposition or erosion. Since these processes act on large areas, distribution of lakes can reflect the intensity of glacial erosional/depositional processes and their spatial extent. Landsat imagery was used to extract lake outlines from a selected pilot-study area on the widest ice-free coastal margin of the south-western Greenland north of Kangerlussuaq. Analysis included image classification and spatial analysis of lakes with elevation data using geographic information system (GIS) tools. A morphometric index was applied to extract kettle lakes as indicators of a specific glacial process – ice stagnation. Analysis of their spatial distribution helped in the reconstruction of glacial dynamics in formerly glaciated terrain. Our results show that spatial lake distribution combined with elevation analysis can be used to identify zones of glacial erosion and deposition. The highest concentrations of lakes within the study area occupy the elevation range between 164 and 361 m above sea level (a.s.l.). This zone can be identified as an area where intensive glacial erosion took place in the past. The widespread distribution of modeled kettle lake features within the same elevation range and across the study area suggests that the last deglaciation process was accompanied by abandonment of blocks of stagnant ice. This conclusion is supported by surface exposure ages obtained in the same study area and published elsewhere. Copyright © 2009 John Wiley & Sons, Ltd

    Preliminary <sup>10</sup>Be chronology for the last deglaciation of the western margin of the Greenland Ice Sheet

    No full text
    The now acknowledged thinning of the Greenland Ice Sheet raises concerns about its potential contribution to future sea level rise. In order to appreciate the full extent of its contribution to sea level rise, reconstruction of the ice sheet's most recent last deglaciation could provide key information on the timing and the height of the ice sheet at a time of rapid climate readjustment. We measured 10Be concentrations in 12 samples collected along longitudinal and altitudinal transects from Sisimiut to within 10 km of the Isunguata Sermia Glacier ice margin on the western coast of Greenland. Along the longitudinal transect, we collected three perched boulders and two bedrocks. In addition, we sampled seven perched boulders along a vertical transect in a valley within 10 km of the Isunguata Sermia Glacier ice margin. Our pilot dataset constrains the height of the ice sheet during the Last Glacial Maximum (LGM) between 500 m and 840 m (including the 120 m relative sea level depression at the time of the LGM, 21 ka BP). From the transect we estimate the thinning of the ice sheet at the end of the deglaciation between 12.3 ± 1.5 10Be ka (n = 2) and 8.3 ± 1.2 10Be ka (n = 3) to be ∼6 cm a−1 over this time period. Direct dating of the retreat of the western margin of the Greenland Ice Sheet has the potential to better constrain the retreat rate of the ice margin, the thickness of the former ice sheet as well as its response to climate change. Copyright © 2008 John Wiley &amp; Sons

    Preliminary <sup>10</sup>Be chronology for the last deglaciation of the western margin of the Greenland Ice Sheet

    No full text
    The now acknowledged thinning of the Greenland Ice Sheet raises concerns about its potential contribution to future sea level rise. In order to appreciate the full extent of its contribution to sea level rise, reconstruction of the ice sheet's most recent last deglaciation could provide key information on the timing and the height of the ice sheet at a time of rapid climate readjustment. We measured 10Be concentrations in 12 samples collected along longitudinal and altitudinal transects from Sisimiut to within 10 km of the Isunguata Sermia Glacier ice margin on the western coast of Greenland. Along the longitudinal transect, we collected three perched boulders and two bedrocks. In addition, we sampled seven perched boulders along a vertical transect in a valley within 10 km of the Isunguata Sermia Glacier ice margin. Our pilot dataset constrains the height of the ice sheet during the Last Glacial Maximum (LGM) between 500 m and 840 m (including the 120 m relative sea level depression at the time of the LGM, 21 ka BP). From the transect we estimate the thinning of the ice sheet at the end of the deglaciation between 12.3 ± 1.5 10Be ka (n = 2) and 8.3 ± 1.2 10Be ka (n = 3) to be ∼6 cm a−1 over this time period. Direct dating of the retreat of the western margin of the Greenland Ice Sheet has the potential to better constrain the retreat rate of the ice margin, the thickness of the former ice sheet as well as its response to climate change. Copyright © 2008 John Wiley &amp; Sons
    corecore