7 research outputs found

    Cellular immune response induced by dna immunization of mice with drug resistant integrases of hiv-1 clade a offers partial protection against growth and metastatic activity of integrase-expressing adenocarcinoma cells

    Get PDF
    Funding Information: Funding: Experiments were supported by the grants of the Russian Science Fund 15-15-30039, Russian Fund for Basic Research 20-04-01034, Latvian Science Fund LZP 2018-2-03-08, and EU-ROPARTNER project “Strengthening and spreading international partnership activities of the Faculty of Biology and Environmental Protection of University of Lodz, Poland, for interdisciplinary research and innovation”. Mobility and method acquisition were supported by Swedish institute PI project 19806/2016TP, and Horizon 2020 project VACTRAIN#692293. MI and BW were supported by Horizon 2020 grant EAVI contract N68113. Funding Information: Experiments were supported by the grants of the Russian Science Fund 15-15-30039, Russian Fund for Basic Research 20-04-01034, Latvian Science Fund LZP 2018-2-03-08, and EU-ROPARTNER project ?Strengthening and spreading international partnership activities of the Faculty of Biology and Environmental Protection of University of Lodz, Poland, for interdisciplinary research and innovation?. Mobility and method acquisition were supported by Swedish institute PI project 19806/2016TP, and Horizon 2020 project VACTRAIN#692293. MI and BW were supported by Horizon 2020 grant EAVI contract N68113. Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Therapeutic DNA-vaccination against drug-resistant HIV-1 may hinder emergence and spread of drug-resistant HIV-1, allowing for longer successful antiretroviral treatment (ART) up-to relief of ART. We designed DNA-vaccines against drug-resistant HIV-1 based on consensus clade A integrase (IN) resistant to raltegravir: IN_in_r1 (L74M/E92Q/V151I/N155H/G163R) or IN_in_r2 (E138K/G140S/Q148K) carrying D64V abrogating IN activity. INs, overexpressed in mammalian cells from synthetic genes, were assessed for stability, route of proteolytic degradation, and ability to induce oxidative stress. Both were found safe in immunotoxicity tests in mice, with no inherent carcinogenicity: their expression did not enhance tumorigenic or metastatic potential of adenocarcinoma 4T1 cells. DNA-immunization of mice with INs induced potent multicytokine T-cell response mainly against aa 209–239, and moderate IgG response cross-recognizing diverse IN variants. DNA-immunization with IN_in_r1 protected 60% of mice from challenge with 4Tlluc2 cells expressing non-mutated IN, while DNA-immunization with IN_in_r2 protected only 20% of mice, although tumor cells expressed IN matching the immunogen. Tumor size inversely correlated with IN-specific IFN-γ/IL-2 T-cell response. IN-expressing tumors displayed compromised metastatic activity restricted to lungs with reduced metastases size. Protective potential of IN immunogens relied on their immunogenicity for CD8+ T-cells, dependent on proteasomal processing and low level of oxidative stress.publishersversionPeer reviewe

    HIV-1 Reverse Transcriptase Promotes Tumor Growth and Metastasis Formation via ROS-Dependent Upregulation of Twist

    Get PDF
    Funding Information: https://orcid.org/0000-0002-6160-2203 Bayurova Ekaterina [email protected] 1 2 Jansons Juris [email protected] 3 4 Skrastina Dace [email protected] 3 4 https://orcid.org/0000-0002-4980-9754 Smirnova Olga [email protected] 5 Mezale Dzeina [email protected] 3 Kostyusheva Anastasia [email protected] 6 Kostyushev Dmitry [email protected] 6 Petkov Stefan [email protected] 7 Podschwadt Philip [email protected] 7 https://orcid.org/0000-0003-0365-570X Valuev-Elliston Vladimir [email protected] 5 Sasinovich Sviataslau [email protected] 7 https://orcid.org/0000-0003-2278-4451 Korolev Sergey [email protected] 8 Warholm Per [email protected] 9 https://orcid.org/0000-0002-2260-6551 Latanova Anastasia [email protected] 1 5 https://orcid.org/0000-0003-2183-0858 Starodubova Elizaveta [email protected] 1 5 https://orcid.org/0000-0001-8506-2339 Tukhvatulin Amir [email protected] 1 Latyshev Oleg [email protected] 1 Selimov Renat [email protected] 10 Metalnikov Pavel [email protected] 10 Komarov Alexander [email protected] 10 https://orcid.org/0000-0002-3673-4714 Ivanova Olga [email protected] 5 Gorodnicheva Tatiana [email protected] 11 https://orcid.org/0000-0002-7443-6961 Kochetkov Sergey [email protected] 5 Gottikh Marina [email protected] 8 Strumfa Ilze [email protected] 3 https://orcid.org/0000-0002-5659-9679 Ivanov Alexander [email protected] 5 Gordeychuk Ilya [email protected] 1 2 12 https://orcid.org/0000-0001-9382-2254 Isaguliants Maria [email protected] 1 2 3 7 García-Rivas Gerardo 1 NF Gamaleya Research Center of Epidemiology and Microbiology Moscow Russia 2 Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences Moscow Russia chumakovs.ru 3 Department of Pathology Riga Stradins University Riga Latvia rsu.lv 4 Latvian Biomedical Research and Study Centre Riga Latvia lu.lv 5 Engelhardt Institute of Molecular Biology Russian Academy of Sciences Moscow Russia ras.ru 6 National Medical Research Center for Tuberculosis and Infectious Diseases Moscow Russia 7 Department of Microbiology Tumor and Cell Biology Karolinska Institutet Stockholm Sweden ki.se 8 Chemistry Department and Belozersky Institute of Physico-Chemical Biology Lomonosov Moscow State University Moscow Russia msu.ru 9 Science for Life Laboratory Stockholm University Stockholm Sweden su.se 10 Russian State Center for Quality and Standardization of Veterinary Drugs and Feed (VGNKI) Moscow Russia 11 Evrogen Moscow Russia 12 Sechenov First Moscow State Medical University Moscow Russia mma.ru 2019 2 12 2019 2019 08 05 2019 01 11 2019 05 11 2019 2 12 2019 2019 Copyright © 2019 Ekaterina Bayurova et al. This is an open access article distributed under the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. HIV-induced immune suppression results in the high prevalence of HIV/AIDS-associated malignancies including Kaposi sarcoma, non-Hodgkin lymphoma, and cervical cancer. HIV-infected people are also at an increased risk of “non-AIDS-defining” malignancies not directly linked to immune suppression but associated with viral infections. Their incidence is increasing despite successful antiretroviral therapy. The mechanism behind this phenomenon remains unclear. Here, we obtained daughter clones of murine mammary gland adenocarcinoma 4T1luc2 cells expressing consensus reverse transcriptase of HIV-1 subtype A FSU_A strain (RT_A) with and without primary mutations of drug resistance. In in vitro tests, mutations of resistance to nucleoside inhibitors K65R/M184V reduced the polymerase, and to nonnucleoside inhibitors K103N/G190S, the RNase H activities of RT_A. Expression of these RT_A variants in 4T1luc2 cells led to increased production of the reactive oxygen species (ROS), lipid peroxidation, enhanced cell motility in the wound healing assay, and upregulation of expression of Vimentin and Twist . These properties, particularly, the expression of Twist , correlated with the levels of expression RT_A and/or the production of ROS. When implanted into syngeneic BALB/C mice, 4T1luc2 cells expressing nonmutated RT_A demonstrated enhanced rate of tumor growth and increased metastatic activity, dependent on the level of expression of RT_A and Twist . No enhancement was observed for the clones expressing mutated RT_A variants. Plausible mechanisms are discussed involving differential interactions of mutated and nonmutated RTs with its cellular partners involved in the regulation of ROS. This study establishes links between the expression of HIV-1 RT, production of ROS, induction of EMT, and enhanced propagation of RT-expressing tumor cells. Such scenario can be proposed as one of the mechanisms of HIV-induced/enhanced carcinogenesis not associated with immune suppression. Ministry of Science and Higher Education of the Russian Federation 075-15-2019-1660 Latvian Science Council LZP-2018/2-0308 EU VACTRAIN Russian Foundation for Basic Research 17-00-00085 17_04_00583 17_54_30002 Publisher Copyright: © 2019 Ekaterina Bayurova et al.HIV-induced immune suppression results in the high prevalence of HIV/AIDS-associated malignancies including Kaposi sarcoma, non-Hodgkin lymphoma, and cervical cancer. HIV-infected people are also at an increased risk of "non-AIDS-defining" malignancies not directly linked to immune suppression but associated with viral infections. Their incidence is increasing despite successful antiretroviral therapy. The mechanism behind this phenomenon remains unclear. Here, we obtained daughter clones of murine mammary gland adenocarcinoma 4T1luc2 cells expressing consensus reverse transcriptase of HIV-1 subtype A FSU_A strain (RT_A) with and without primary mutations of drug resistance. In in vitro tests, mutations of resistance to nucleoside inhibitors K65R/M184V reduced the polymerase, and to nonnucleoside inhibitors K103N/G190S, the RNase H activities of RT_A. Expression of these RT_A variants in 4T1luc2 cells led to increased production of the reactive oxygen species (ROS), lipid peroxidation, enhanced cell motility in the wound healing assay, and upregulation of expression of Vimentin and Twist. These properties, particularly, the expression of Twist, correlated with the levels of expression RT_A and/or the production of ROS. When implanted into syngeneic BALB/C mice, 4T1luc2 cells expressing nonmutated RT_A demonstrated enhanced rate of tumor growth and increased metastatic activity, dependent on the level of expression of RT_A and Twist. No enhancement was observed for the clones expressing mutated RT_A variants. Plausible mechanisms are discussed involving differential interactions of mutated and nonmutated RTs with its cellular partners involved in the regulation of ROS. This study establishes links between the expression of HIV-1 RT, production of ROS, induction of EMT, and enhanced propagation of RT-expressing tumor cells. Such scenario can be proposed as one of the mechanisms of HIV-induced/enhanced carcinogenesis not associated with immune suppression.publishersversionPeer reviewe

    Expression of the Reverse Transcriptase Domain of Telomerase Reverse Transcriptase Induces Lytic Cellular Response in DNA-Immunized Mice and Limits Tumorigenic and Metastatic Potential of Murine Adenocarcinoma 4T1 Cells

    No full text
    Telomerase reverse transcriptase (TERT) is a classic tumor-associated antigen overexpressed in majority of tumors. Several TERT-based cancer vaccines are currently in clinical trials, but immune correlates of their antitumor activity remain largely unknown. Here, we characterized fine specificity and lytic potential of immune response against rat TERT in mice. BALB/c mice were primed with plasmids encoding expression-optimized hemagglutinin-tagged or nontagged TERT or empty vector and boosted with same DNA mixed with plasmid encoding firefly luciferase (Luc DNA). Injections were followed by electroporation. Photon emission from booster sites was assessed by in vivo bioluminescent imaging. Two weeks post boost, mice were sacrificed and assessed for IFN-γ, interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α) production by T-cells upon their stimulation with TERT peptides and for anti-TERT antibodies. All TERT DNA-immunized mice developed cellular and antibody response against epitopes at the N-terminus and reverse transcriptase domain (rtTERT) of TERT. Photon emission from mice boosted with TERT/TERT-HA+Luc DNA was 100 times lower than from vector+Luc DNA-boosted controls. Bioluminescence loss correlated with percent of IFN-γ/IL-2/TNF-α producing CD8+ and CD4+ T-cells specific to rtTERT, indicating immune clearance of TERT/Luc-coexpressing cells. We made murine adenocarcinoma 4T1luc2 cells to express rtTERT by lentiviral transduction. Expression of rtTERT significantly reduced the capacity of 4T1luc2 to form tumors and metastasize in mice, while not affecting in vitro growth. Mice which rejected the tumors developed T-cell response against rtTERT and low/no response to the autoepitope of TERT. This advances rtTERT as key component of TERT-based therapeutic vaccines against cancer
    corecore