4 research outputs found

    Mapping priority marine habitats : knowledge of their ecosystem to underpin the marine planning process

    Get PDF
    Marine planners need to know about ecosystems, such as Priority Marine Habitats (PMHs) in order to manage and conserve them effectively. The overarching theme of this thesis is to contribute to this knowledge through the development of “marine planning tools”. The primary focus is on the PMH, Modiolus modiolus beds, although other PMHs and Marine Protected Areas (MPAs) were also considered. Four key studies were designed and conducted, i) Species Distribution Modelling (SDM) of M. modiolus in UK waters; ii) SDM of PMHs in Europe; iii) assessment of MPA management effort; and iv) the genetic connectivity of M. modiolus beds Overall, the research provided information and knowledge to contribute to implementation of a truly ecosystem-based approach to management and effective PMH management. It is now known: i) where Modiolus modiolus beds occur; ii) where they have the potential to occur, now and in the future; iii) that there is the potential for them to be lost/ hindered or lack-viability if ocean temperatures increase; iv) that they may become more important to conservation at northern latitudes in the future; v) that European nations will have to work towards integrated marine conservation policies and protection when considering all PMHs; vi) that some MPAs may require more effort to manage than others and that it may be possible to predict which ones they will be; vii) that cumulative human impacts may not be the driving force for management effort; and viii) that some M. modiolus beds in the UK are potentially connected. The data and discussion points generated within this thesis will enable effective PMH management through the selection of appropriate management strategies

    Predictive habitat modelling as a tool to assess the change in distribution and extent of an OSPAR priority habitat under an increased ocean temperature scenario:consequences for marine protected area networks and management

    Get PDF
    The aims of this study were to determine the extent and distribution of an OSPAR priority habitat under current baseline ocean temperatures; to illustrate the prospect for habitat loss under a changing ocean temperature scenario; and to demonstrate the potential application of predictive habitat mapping in "future-proofing" conservation and biodiversity management. Maxent modelling and GIS environmental envelope analysis of the biogenic bed forming species, Modiolus modiolus was carried out. The Maxent model was tested and validated using 75%/25% training/test occurrence records and validated against two sampling biases (the whole study area and a 20km buffer). The model was compared to the envelope analysis and the area under the receiver operating characteristic curve (Area Under the curve; AUC) was evaluated. The performance of the Maxent model was rated as 'good' to 'excellent' on all replicated runs and low variation in the runs was recorded from the AUC values. The extent of "most suitable", "less suitable" and "unsuitable" habitat was calculated for the baseline year (2009) and the projected increased ocean temperature scenarios (2030, 2050, 2080 and 2100). A loss of 100% of "most suitable" habitat was reported by 2080. Maintaining a suitable level of protection of marine habitats/species of conservation importance may require management of the decline and migration rather than maintenance of present extent. Methods applied in this study provide the initial application of a plausible "conservation management tool"

    Adaptive management, international co-operation and planning for marine conservation hotspots in a changing climate

    Get PDF
    Acknowledgements This work received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland) and their support is gratefully acknowledged. MASTS is funded by the Scottish Funding Council (Grant reference HR09011) and contributing institutions.Peer reviewedPublisher PD
    corecore