7,096 research outputs found

    The timing and magnitude of upper body muscular activity during a field hockey hit

    Get PDF
    The aim of this study was to investigate the contributions to stick motion in the field hockey hit by monitoring muscle activity in the arms and trunk and synchronising these with arm and stick kinematics. The hits of ten male, university-level field hockey players were analysed. Whilst their interpretation is complicated by the closed kinetic loop formed by the arms and stick, the data collected here represent a step forward in establishing the contributions from muscular activity and segmental interactions to the field hockey hit. This study has shown that EMG analysis alone is not sufficient to explain the nature of muscular activity patterns and that the temporal aspects of EMG need to be examined in combination with kinematic data to ascertain the role of muscular activity during movement

    Recent Results on the Decay of Metastable Phases

    Full text link
    We review some aspects of current knowledge regarding the decay of metastable phases in many-particle systems. In particular we emphasize recent theoretical and computational developments and numerical results regarding homogeneous nucleation and growth in kinetic Ising and lattice-gas models. An introductory discussion of the droplet theory of homogeneous nucleation is followed by a discussion of Monte Carlo and transfer-matrix methods commonly used for numerical study of metastable decay, including some new algorithms. Next we discuss specific classes of systems. These include a brief discussion of recent progress for fluids, and more exhaustive considerations of ferromagnetic Ising models ({\it i.e.}, attractive lattice-gas models) with weak long-range interactions and with short-range interactions. Whereas weak-long-range-force (WLRF) models have infinitely long-lived metastable phases in the infinite-range limit, metastable phases in short-range-force (SRF) models eventually decay, albeit extremely slowly. Recent results on the finite-size scaling of metastable lifetimes in SRF models are reviewed, and it is pointed out that such effects may be experimentally observable.Comment: 34 pages, LaTex, 8 ps figs. on request, preprint FSU-SCRI-94-6

    The Brady Solution: A Due Process Remedy for Those Convicted with Evidence from Faulty Crime Labs

    Get PDF

    Implementing the Re-Read Adapt and Answer-Comprehend Intervention with Transition-Age Students with Intellectual and Developmental Disabilities

    Get PDF
    This presentation will discuss a project designed to improve the reading rate and comprehension of 18-21 year old students with intellectual and developmental disabilities using the Reread-Adapt and Answer-Comprehend Intervention. Results indicated an increase in decoding accuracy across five participants, however there were limited increases in reading rate and comprehension. The observation of increases in decoding accuracy is notable given Haring and Eaton’s (1978) Instructional Hierarchy which states accuracy is acquired prior to fluency. Acquiring adequate reading skills is necessary - though not sufficient - for individuals from this population to participate in postsecondary education and realize their chosen goals

    Strain-Modified RKKY Interaction in Carbon Nanotubes

    Get PDF
    For low-dimensional metallic structures, such as nanotubes, the exchange coupling between localized magnetic dopants is predicted to decay slowly with separation. The long-range character of this interaction plays a significant role in determining the magnetic order of the system. It has previously been shown that the interaction range depends on the conformation of the magnetic dopants in both graphene and nanotubes. Here we examine the RKKY interaction in carbon nanotubes in the presence of uniaxial strain for a range of different impurity configurations. We show that strain is capable of amplifying or attenuating the RKKY interaction, significantly increasing certain interaction ranges, and acting as a switch: effectively turning on or off the interaction. We argue that uniaxial strain can be employed to significantly manipulate magnetic interactions in carbon nanotubes, allowing an interplay between mechanical and magnetic properties in future spintronic devices. We also examine the dimensional relationship between graphene and nanotubes with regards to the decay rate of the RKKY interaction.Comment: 7 pages, 6 figures, submitte
    • …
    corecore