48 research outputs found
Neither Replication nor Simulation Supports a Role for the Axon Guidance Pathway in the Genetics of Parkinson's Disease
Susceptibility to sporadic Parkinson's disease (PD) is thought to be influenced by both genetic and environmental factors and their interaction with each other. Statistical models including multiple variants in axon guidance pathway genes have recently been purported to be capable of predicting PD risk, survival free of the disease and age at disease onset; however the specific models have not undergone independent validation. Here we tested the best proposed risk panel of 23 single nucleotide polymorphisms (SNPs) in two PD sample sets, with a total of 525 cases and 518 controls. By single marker analysis, only one marker was significantly associated with PD risk in one of our sample sets (rs6692804: P = 0.03). Multi-marker analysis using the reported model found a mild association in one sample set (two sided P = 0.049, odds ratio for each score change = 1.07) but no significance in the other (two sided P = 0.98, odds ratio = 1), a stark contrast to the reported strong association with PD risk (P = 4.64×10−38, odds ratio as high as 90.8). Following a procedure similar to that used to build the reported model, simulated multi-marker models containing SNPs from randomly chosen genes in a genome wide PD dataset produced P-values that were highly significant and indistinguishable from similar models where disease status was permuted (3.13×10−23 to 4.90×10−64), demonstrating the potential for overfitting in the model building process. Together, these results challenge the robustness of the reported panel of genetic markers to predict PD risk in particular and a role of the axon guidance pathway in PD genetics in general
Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss
<p>Abstract</p> <p>Background</p> <p>The bacterial genus <it>Listeria </it>contains pathogenic and non-pathogenic species, including the pathogens <it>L. monocytogenes </it>and <it>L. ivanovii</it>, both of which carry homologous virulence gene clusters such as the <it>prfA </it>cluster and clusters of internalin genes. Initial evidence for multiple deletions of the <it>prfA </it>cluster during the evolution of <it>Listeria </it>indicates that this genus provides an interesting model for studying the evolution of virulence and also presents practical challenges with regard to definition of pathogenic strains.</p> <p>Results</p> <p>To better understand genome evolution and evolution of virulence characteristics in <it>Listeria</it>, we used a next generation sequencing approach to generate draft genomes for seven strains representing <it>Listeria </it>species or clades for which genome sequences were not available. Comparative analyses of these draft genomes and six publicly available genomes, which together represent the main <it>Listeria </it>species, showed evidence for (i) a pangenome with 2,032 core and 2,918 accessory genes identified to date, (ii) a critical role of gene loss events in transition of <it>Listeria </it>species from facultative pathogen to saprotroph, even though a consistent pattern of gene loss seemed to be absent, and a number of isolates representing non-pathogenic species still carried some virulence associated genes, and (iii) divergence of modern pathogenic and non-pathogenic <it>Listeria </it>species and strains, most likely circa 47 million years ago, from a pathogenic common ancestor that contained key virulence genes.</p> <p>Conclusions</p> <p>Genome evolution in <it>Listeria </it>involved limited gene loss and acquisition as supported by (i) a relatively high coverage of the predicted pan-genome by the observed pan-genome, (ii) conserved genome size (between 2.8 and 3.2 Mb), and (iii) a highly syntenic genome. Limited gene loss in <it>Listeria </it>did include loss of virulence associated genes, likely associated with multiple transitions to a saprotrophic lifestyle. The genus <it>Listeria </it>thus provides an example of a group of bacteria that appears to evolve through a loss of virulence rather than acquisition of virulence characteristics. While <it>Listeria </it>includes a number of species-like clades, many of these putative species include clades or strains with atypical virulence associated characteristics. This information will allow for the development of genetic and genomic criteria for pathogenic strains, including development of assays that specifically detect pathogenic <it>Listeria </it>strains.</p
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference