46 research outputs found
FORTE satellite constraints on ultra-high energy cosmic particle fluxes
The FORTE (Fast On-orbit Recording of Transient Events) satellite records
bursts of electromagnetic waves arising from near the Earth's surface in the
radio frequency (RF) range of 30 to 300 MHz with a dual polarization antenna.
We investigate the possible RF signature of ultra-high energy cosmic-ray
particles in the form of coherent Cherenkov radiation from cascades in ice. We
calculate the sensitivity of the FORTE satellite to ultra-high energy (UHE)
neutrino fluxes at different energies beyond the Greisen-Zatsepin-Kuzmin (GZK)
cutoff. Some constraints on supersymmetry model parameters are also estimated
due to the limits that FORTE sets on the UHE neutralino flux. The FORTE
database consists of over 4 million recorded events to date, including in
principle some events associated with UHE neutrinos. We search for candidate
FORTE events in the period from September 1997 to December 1999. The candidate
production mechanism is via coherent VHF radiation from a UHE neutrino shower
in the Greenland ice sheet. We demonstrate a high efficiency for selection
against lightning and anthropogenic backgrounds. A single candidate out of
several thousand raw triggers survives all cuts, and we set limits on the
corresponding particle fluxes assuming this event represents our background
level.Comment: added a table, updated references and Figure 8, this version is
submitted to Phys. Rev.
Relic Neutrino Absorption Spectroscopy
Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang
relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption
dips in the neutrino flux to be observed at Earth. The high-energy edges of
these dips are fixed, via the resonance energies, by the neutrino masses alone.
Their depths are determined by the cosmic neutrino background density, by the
cosmological parameters determining the expansion rate of the universe, and by
the large redshift history of the cosmic neutrino sources. We investigate the
possibility of determining the existence of the cosmic neutrino background
within the next decade from a measurement of these absorption dips in the
neutrino flux. As a by-product, we study the prospects to infer the absolute
neutrino mass scale. We find that, with the presently planned neutrino
detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant
energy regime above 10^{21} eV, relic neutrino absorption spectroscopy becomes
a realistic possibility. It requires, however, the existence of extremely
powerful neutrino sources, which should be opaque to nucleons and high-energy
photons to evade present constraints. Furthermore, the neutrino mass spectrum
must be quasi-degenerate to optimize the dip, which implies m_{nu} >~ 0.1 eV
for the lightest neutrino. With a second generation of neutrino detectors,
these demanding requirements can be relaxed considerably.Comment: 19 pages, 26 figures, REVTeX
Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum
We report a first measurement for ultra-high energy cosmic rays of the
correlation between the depth of shower maximum and the signal in the water
Cherenkov stations of air-showers registered simultaneously by the fluorescence
and the surface detectors of the Pierre Auger Observatory. Such a correlation
measurement is a unique feature of a hybrid air-shower observatory with
sensitivity to both the electromagnetic and muonic components. It allows an
accurate determination of the spread of primary masses in the cosmic-ray flux.
Up till now, constraints on the spread of primary masses have been dominated by
systematic uncertainties. The present correlation measurement is not affected
by systematics in the measurement of the depth of shower maximum or the signal
in the water Cherenkov stations. The analysis relies on general characteristics
of air showers and is thus robust also with respect to uncertainties in
hadronic event generators. The observed correlation in the energy range around
the `ankle' at differs significantly from
expectations for pure primary cosmic-ray compositions. A light composition made
up of proton and helium only is equally inconsistent with observations. The
data are explained well by a mixed composition including nuclei with mass . Scenarios such as the proton dip model, with almost pure compositions, are
thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray
flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Ablation of lysophosphatidic acid receptor 1 attenuates hypertrophic cardiomyopathy in a mouse model.
Myocardial fibrosis is a key pathologic feature of hypertrophic cardiomyopathy (HCM). However, the fibrotic pathways activated by HCM-causing sarcomere protein gene mutations are poorly defined. Because lysophosphatidic acid is a mediator of fibrosis in multiple organs and diseases, we tested the role of the lysophosphatidic acid pathway in HCM. Lysphosphatidic acid receptor 1 (LPAR1), a cell surface receptor, is required for lysophosphatidic acid mediation of fibrosis. We bred HCM mice carrying a pathogenic myosin heavy-chain variant (403(+/-)) with Lpar1-ablated mice to create mice carrying both genetic changes (403(+/-) LPAR1(-/-)) and assessed development of cardiac hypertrophy and fibrosis. Compared with 403(+/-) LPAR1(WT), 403(+/-) LPAR1(-/-) mice developed significantly less hypertrophy and fibrosis. Single-nucleus RNA sequencing of left ventricular tissue demonstrated that Lpar1 was predominantly expressed by lymphatic endothelial cells (LECs) and cardiac fibroblasts. Lpar1 ablation reduced the population of LECs, confirmed by immunofluorescence staining of the LEC markers Lyve1 and Ccl21a and, by in situ hybridization, for Reln and Ccl21a. Lpar1 ablation also altered the distribution of fibroblast cell states. FB1 and FB2 fibroblasts decreased while FB0 and FB3 fibroblasts increased. Our findings indicate that Lpar1 is expressed predominantly by LECs and fibroblasts in the heart and is required for development of hypertrophy and fibrosis in an HCM mouse model. LPAR1 antagonism, including agents in clinical trials for other fibrotic diseases, may be beneficial for HCM
Recommended from our members
Pose-informed deep learning method for SAR ATR
Synthetic aperture radar (SAR) images for automatic target classification (automatic target recognition (ATR)) have attracted significant interest as they can be acquired day and night under a wide range of weather conditions. However, SAR images can be time consuming to analyse, even for experts. ATR can alleviate this burden and deep learning is an attractive solution. A new deep learning Pose-informed architecture solution, that takes into account the impact of target orientation on the SAR image as the scatterers configuration changes, is proposed. The classification is achieved in two stages. First, the orientation of the target is determined using a Hough transform and a convolutional neural network (CNN). Then, classification is achieved with a CNN specifically trained on targets with similar orientations to the target under test. The networks are trained with translation and SAR-specific data augmentation. The proposed Pose-informed deep network architecture was successfully tested on the Military Ground Target Dataset (MGTD) and the Moving and Stationary Target Acquisition and Recognition (MSTAR) datasets. Results show the proposed solution outperformed standard AlexNets on the MGTD, MSTAR extended operating condition (EOC)1, EOC2 and standard operating condition (SOC)10 datasets with a score of 99.13% on the MSTAR SOC10
A Targeted Search for Point Sources of EeV Photons with the Pierre Auger Observatory
Simultaneous measurements of air showers with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for EeV photon point sources. Several Galactic and extragalactic candidate objects are grouped in classes to reduce the statistical penalty of many trials from that of a blind search and are analyzed for a significant excess above the background expectation. The presented search does not find any evidence for photon emission at candidate sources, and combined p-values for every class are reported. Particle and energy flux upper limits are given for selected candidate sources. These limits significantly constrain predictions of EeV proton emission models from non-transient Galactic and nearby extragalactic sources, as illustrated for the particular case of the Galactic center region
Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory
We present a new method for probing the hadronic interaction models at ultrahigh energy and extracting details about mass composition. This is done using the time profiles of the signals recorded with the water-Cherenkov detectors of the Pierre Auger Observatory. The profiles arise from a mix of the muon and electromagnetic components of air showers. Using the risetimes of the recorded signals, we define a new parameter, which we use to compare our observations with predictions from simulations. We find, first, inconsistencies between our data and predictions over a greater energy range and with substantially more events than in previous studies. Second, by calibrating the new parameter with fluorescence measurements from observations made at the Auger Observatory, we can infer the depth of shower maximum Xmax for a sample of over 81,000 events extending from 0.3 to over 100 EeV. Above 30 EeV, the sample is nearly 14 times larger than what is currently available from fluorescence measurements and extending the covered energy range by half a decade. The energy dependence of ?Xmaxcopyright is compared to simulations and interpreted in terms of the mean of the logarithmic mass. We find good agreement with previous work and extend the measurement of the mean depth of shower maximum to greater energies than before, reducing significantly the statistical uncertainty associated with the inferences about mass composition