244 research outputs found

    Oxidative capacity of liver and muscle from genetically obese rats

    Get PDF
    In vitro oxygen consumption of the muscles and hepatocytes was similar for 6 week old male obese and nonobese Zucker rats. Oxidative capacity, as measured by mitochondrial oxygen consumption and the activities of citrate synthase, succinate dehydrogenase, and cytochrome oxidase, was also phenotypically similar in the liver and muscles of these rats. In addition, muscle oxidative capacity was similar for obese and nonobese rats at 12 weeks of age, as was the change in muscle oxidative capacity in response to treadmill exercise. Total muscle mass, as measured by empty carcass protein, was phenotypically similar at 6 weeks of age, but was less in the obese rats at 13 weeks of age. Exercise did not reverse the defect in muscle mass accretion. However, exercise reduced, but did not normalize, hyperphagia and lipid accretion in the obese rat. The data indicate an absence of a defect in muscle or liver oxygen consumption as important contributors to the increased metabolic efficiency in the 6 week old obese Zucker rat. However, it is suggested that the decreased muscle mass may contribute to the increased metabolic efficiency of the 12 week old obese rat. The data further show that regular strenuous aerobic exercise will not significantly reverse the development of the obese state in the Zucker rat

    Advanced neuroimaging of cerebral small vessel disease

    Get PDF

    MRI Relaxometry for Quantitative Analysis of USPIO Uptake in Cerebral Small Vessel Disease

    Get PDF
    A protocol for evaluating ultrasmall superparamagnetic particles of iron oxide (USPIO) uptake and elimination in cerebral small vessel disease patients was developed and piloted. B1-insensitive R1 measurement was evaluated in vitro. Twelve participants with history of minor stroke were scanned at 3-T MRI including structural imaging, and R1 and R2* mapping. Participants were scanned (i) before and (ii) after USPIO (ferumoxytol) infusion, and again at (iii) 24–30 h and (iv) one month. Absolute and blood-normalised changes in R1 and R2* were measured in white matter (WM), deep grey matter (GM), white matter hyperintensity (WMH) and stroke lesion regions. R1 measurements were accurate across a wide range of values. R1 (p < 0.05) and R2* (p < 0.01) mapping detected increases in relaxation rate in all tissues immediately post-USPIO and at 24–30 h. R2* returned to baseline at one month. Blood-normalised R1 and R2* changes post-infusion and at 24–30 h were similar, and were greater in GM versus WM (p < 0.001). Narrower distributions were seen with R2* than for R1 mapping. R1 and R2* changes were correlated at 24–30 h (p < 0.01). MRI relaxometry permits quantitative evaluation of USPIO uptake; R2* appears to be more sensitive to USPIO than R1. Our data are explained by intravascular uptake alone, yielding estimates of cerebral blood volume, and did not support parenchymal uptake. Ferumoxytol appears to be eliminated at 1 month. The approach should be valuable in future studies to quantify both blood-pool USPIO and parenchymal uptake associated with inflammatory cells or blood-brain barrier leak

    Characterising the neurobiological mechanisms of action of exercise and cognitive behavioural interventions for rheumatoid arthritis fatigue: an MRI brain study

    Get PDF
    Objective: Chronic fatigue is a major clinical unmet need among patients with rheumatoid arthritis (RA). Current therapies are limited to nonpharmacological interventions, such as personalized exercise programs (PEPs) and cognitive–behavioral approaches (CBAs); however, most patients still continue to report severe fatigue. To inform more effective therapies, we conducted a magnetic resonance imaging (MRI) brain study of PEPs and CBAs, nested within a randomized controlled trial (RCT), to identify their neurobiological mechanisms of fatigue reduction in RA. Methods: A subgroup of patients with RA (n = 90), participating in an RCT of PEPs and CBAs for fatigue, undertook a multimodal MRI brain scan following randomization to either usual care (UC) alone or in addition to PEPs and CBAs and again after the intervention (six months). Brain regional volumetric, functional, and structural connectivity indices were curated and then computed employing a causal analysis framework. The primary outcome was fatigue improvement (Chalder fatigue scale). Results: Several structural and functional connections were identified as mediators of fatigue improvement in both PEPs and CBAs compared to UC. PEPs had a more pronounced effect on functional connectivity than CBAs; however, structural connectivity between the left isthmus cingulate cortex (L-ICC) and left paracentral lobule (L-PCL) was shared, and the size of mediation effect ranked highly for both PEPs and CBAs (ßAverage = −0.46, SD 0.61; ßAverage = −0.32, SD 0.47, respectively). Conclusion: The structural connection between the L-ICC and L-PCL appears to be a dominant mechanism for how both PEPs and CBAs reduce fatigue among patients with RA. This supports its potential as a substrate of fatigue neurobiology and a putative candidate for future targeting

    Evaluation of CSF and plasma biomarkers of brain melanocortin activity in response to caloric restriction in humans

    Get PDF
    The melanocortin neuronal system, which consists of hypothalamic proopiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, is a leptin target that regulates energy balance and metabolism, but studies in humans are limited by a lack of reliable biomarkers to assess brain melanocortin activity. The objective of this study was to measure the POMC prohormone and its processed peptide, β-endorphin (β-EP), in cerebrospinal fluid (CSF) and AgRP in CSF and plasma after calorie restriction to validate their utility as biomarkers of brain melanocortin activity. CSF and plasma were obtained from 10 lean and obese subjects after fasting (40 h) and refeeding (24 h), and from 8 obese subjects before and after 6 wk of dieting (800 kcal/day) to assess changes in neuropeptide and hormone levels. After fasting, plasma leptin decreased to 35%, and AgRP increased to 153% of baseline. During refeeding, AgRP declined as leptin increased; CSF β-EP increased, but POMC did not change. Relative changes in plasma and CSF leptin were blunted in obese subjects. After dieting, plasma and CSF leptin decreased to 46% and 70% of baseline, CSF POMC and β-EP decreased, and plasma AgRP increased. At baseline, AgRP correlated negatively with insulin and homeostasis model assessment (HOMA-IR), and positively with the Matsuda index. Thus, following chronic calorie restriction, POMC and β-EP declined in CSF, whereas acutely, only β-EP changed. Plasma AgRP, however, increased after both acute and chronic calorie restriction. These results support the use of CSF POMC and plasma AgRP as biomarkers of hypothalamic melanocortin activity and provide evidence linking AgRP to insulin sensitivity

    Endothelial function, inflammation, thrombosis and basal ganglia perivascular spaces in patients with stroke

    Get PDF
    Background and Objective: Recent studies suggest perivascular spaces are a marker of small vessel disease, blood–brain barrier permeability, and inflammation, but little is known about their risk factors and associations with peripheral blood markers. Materials and Methods: In prospectively recruited patients with recent minor ischemic stroke, we investigated the influence of age, sex, hypertension, diabetes, and smoking on the severity of perivascular spaces in the basal ganglia seen on T2- weighted magnetic resonance imaging. We assessed plasma markers of endothelial function (von Willebrand factor, intracellular adhesion molecule-1), inflammation (interleukin-6, tumor necrosis factor-alpha, C-reactive protein), and thrombosis (fi- brinogen, prothrombin fragments 1 + 2, thrombin–antithrombin complex, tissue plasminogen activator, D-dimer). We used a validated semi-automated method to measure basal ganglia perivascular spaces count and volume. We tested uniand multivariable associations between blood markers and basal ganglia perivascular spaces count and volume. Findings: In 100 patients (median age: 67 years, range: 37-92), on adjusted analysis, basal ganglia perivascular spaces count was associated with age (r = .117, P = .003) and hypertension (r = 2.225, P = .013). On multivariable linear regression, adjusted for age, sex, hypertension, smoking and diabetes, reduced von Willebrand factor was associated with increased basal ganglia perivascular spaces count (r = −.025, P = .032). Conclusion: The association of increased basal ganglia perivascular spaces count with reduced von Willebrand factor is novel. As von Willebrand factor may promote cerebral endothelial integrity, insufficient von Willebrand factor is consistent with dysfunctional cerebral endothelium and increased basal ganglia perivascular spaces in cerebral small vessel disease. Quantitative perivascular spaces measurement may increase sensitivity to detect cerebral endothelial dysfunction

    Protocol: The Lacunar Intervention Trial 2 (LACI-2). A trial of two repurposed licenced drugs to prevent progression of cerebral small vessel disease

    Get PDF
    BackgroundSmall vessel disease causes a quarter of ischaemic strokes (lacunar subtype), up to 45% of dementia either as vascular or mixed types, cognitive impairment and physical frailty. However, there is no specific treatment to prevent progression of small vessel disease.AimWe designed the LACunar Intervention Trial-2 (LACI-2) to test feasibility of a large trial testing cilostazol and/or isosorbide mononitrate (ISMN) by demonstrating adequate participant recruitment and retention in follow-up, drug tolerability, safety and confirm outcome event rates required to power a phase 3 trial.Methods and designLACI-2 is an investigator-initiated, prospective randomised open label blinded endpoint (PROBE) trial aiming to recruit 400 patients with prior lacunar syndrome due to a small subcortical infarct. We randomise participants to cilostazol v no cilostazol and ISMN or no ISMN, minimising on key prognostic factors. All patients receive guideline-based best medical therapy. Patients commence trial drug at low dose, increment to full dose over 2–4 weeks, continuing on full dose for a year. We follow-up participants to one year for symptoms, tablet compliance, safety, recurrent vascular events, cognition and functional outcomes, Trails B and brain MRI. LACI-2 is registered ISRCTN 14911850, EudraCT 2016–002277-35.Trial outcome: Primary outcome is feasibility of recruitment and compliance; secondary outcomes include safety (cerebral or systemic bleeding, falls, death), efficacy (recurrent cerebral and cardiac vascular events, cognition on TICS, Trails B) and tolerability.SummaryLACI-2 will determine feasibility, tolerability and provide outcome rates to power a large phase 3 trial to prevent progression of cerebral small vessel disease

    Design of trials in lacunar stroke and cerebral small vessel disease: review and experience with the LACunar Intervention Trial 2 (LACI-2)

    Get PDF
    Cerebral small vessel disease (cSVD) causes lacunar stroke (25% of ischaemic strokes), haemorrhage, dementia, physical frailty, or is 'covert', but has no specific treatment. Uncertainties about the design of clinical trials in cSVD, which patients to include or outcomes to assess, may have delayed progress. Based on experience in recent cSVD trials, we reviewed ways to facilitate future trials in patients with cSVD. We assessed the literature and the LACunar Intervention Trial 2 (LACI-2) for data to inform choice of Participant, Intervention, Comparator, Outcome, including clinical versus intermediary endpoints, potential interventions, effect of outcome on missing data, methods to aid retention and reduce data loss. We modelled risk of missing outcomes by baseline prognostic variables in LACI-2 using binary logistic regression. Imaging versus clinical outcomes led to larger proportions of missing data. We present reasons for and against broad versus narrow entry criteria. We identified numerous repurposable drugs with relevant modes of action to test in various cSVD subtypes. Cognitive impairment is the most common clinical outcome after lacunar ischaemic stroke but was missing more frequently than dependency, quality of life or vascular events in LACI-2. Assessing cognitive status using Diagnostic and Statistical Manual for Mental Disorders Fifth Edition can use cognitive data from multiple sources and may help reduce data losses. Trials in patients with all cSVD subtypes are urgently needed and should use broad entry criteria and clinical outcomes and focus on ways to maximise collection of cognitive outcomes to avoid missing data
    • …
    corecore