36,861 research outputs found
Noise of a model counterrotation propeller with reduced aft rotor diameter at simulated takeoff/approach conditions (F7/A3)
A model high-speed advanced counterrotation propeller, F7/A3, was tested in the NASA Lewis Research Center 9 by 15 foot Anechoic Wind Tunnel at simulated takeoff/approach conditions of 0.2 Mach number. Acoustic measurements were taken with an axially translating microphone probe, and with a polar microphone probe which was fixed to the propeller nacelle and could take both sideline and circumferential acoustic surveys. Aerodynamic measurements were also made to establish propeller operating conditions. The propeller was run at two setting angles (front angle/rear angle) of 36.4/43.5 and 41.1/46.4 degrees, forward rotor tip speeds from 165 to 259 m/sec, rotor spacings from 8.48 to 14.99 cm based on pitch change axis separation, and angles of attack to 16 degrees. The aft rotor diameter was 85 percent of the forward rotor diameter to reduce tip vortex-aft rotor interaction as a major interaction noise source. Results are compared with equal diameter F7/A7 data which was previously obtained under similar operating conditions. The aft rotor-alone tone was 7 dB lower for the reduced diameter aft rotor, due to reduced tip speed at constant rpm. Interaction tone levels for the F7/A3 propeller were higher at minimum row spacing and lower at maximum spacing
On charged impurity structures in liquid helium
The thermoluminescence spectra of impurity-helium condensates (IHC) submerged in superfluid helium have
been observed for the first time. Thermoluminescence of impurity-helium condensates submerged in superfluid
helium is explained by neutralization reactions occurring in impurity nanoclusters. Optical spectra of excited
products of neutralization reactions between nitrogen cations and thermoactivated electrons were rather different
from the spectra observed at higher temperatures, when the luminescence due to nitrogen atom recombination
dominates. New results on current detection during the IHC destruction are presented. Two different mechanisms
of nanocluster charging are proposed to describe the phenomena observed during preparation and warmup
of IHC samples in bulk superfluid helium, and destruction of IHC samples out of liquid helium
Spectroscopic characterization and detection of Ethyl Mercaptan in Orion
New laboratory data of ethyl mercaptan, CHCHSH, in the millimeter
and submillimeter-wave domains (up to 880 GHz) provided very precise values of
the spectroscopic constants that allowed the detection of
-CHCHSH towards Orion KL. 77 unblended or slightly blended
lines plus no missing transitions in the range 80-280 GHz support this
identification. A detection of methyl mercaptan, CHSH, in the spectral
survey of Orion KL is reported as well. Our column density results indicate
that methyl mercaptan is 5 times more abundant than ethyl mercaptan in
the hot core of Orion KL.Comment: Accepted for publication in ApJL (30 January 2014)/ submitted (8
January 2014
Using a Grid-Enabled Wireless Sensor Network for Flood Management
Flooding is becoming an increasing problem. As a result there is a need to deploy more sophisticated sensor networks to detect and react to flooding. This paper outlines a demonstration that illustrates our proposed solution to this problem involving embedded wireless hardware, component based middleware and overlay networks
Distributed super dense coding over noisy channels
We study multipartite super dense coding in the presence of a covariant noisy
channel. We investigate the case of many senders and one receiver, considering
both unitary and non-unitary encoding. We study the scenarios where the senders
apply local encoding or global encoding. We show that, up to some
pre-processing on the original state, the senders cannot do better encoding
than local, unitary encoding. We then introduce general Pauli channels as a
significant example of covariant maps. Considering Pauli channels, we provide
examples for which the super dense coding capacity is explicitly determined
Possible High-Redshift, Low-Luminosity AGN Activity in the Hubble Deep Field
In the Hubble Deep Field (HDF), twelve candidate sources of high-redshift (z
> 3.5) AGN activity have been identified. The color selection criteria were
established by passing spectra of selected quasars and Seyfert galaxies
(appropriately redshifted and modified for "Lyman forest" absorption), as well
as stars, observed normal and starburst galaxies, and galaxy models for various
redshifts through the filters used for the HDF observations. The actual
identification of AGN candidates also involved convolving a
Laplacian-of-Gaussian filter with the HDF images, thereby removing relatively
flat galactic backgrounds and leaving only the point-like components in the
centers. Along with positions and colors, estimated redshifts and absolute
magnitudes are reported, with the candidates falling toward the faint end of
the AGN luminosity function. One candidate has been previously observed
spectroscopically, with a measured redshift of 4.02. The number of sources
reported here is consistent with a simple extrapolation of the observed quasar
luminosity function to magnitude 30 in B_Johnson. Implications for ionization
of the intergalactic medium and for gravitational lensing are discussed.Comment: 10 pages LaTex plus 2 separate files (Table 1 which is a two-page
landscape LaTex file; and Figure 6 which is a large (0.7 MB) non-encapsulated
postscript file). Accepted for publication in the Astronomical Journa
Circuit analysis of quantum measurement
We develop a circuit theory that enables us to analyze quantum measurements
on a two-level system and on a continuous-variable system on an equal footing.
As a measurement scheme applicable to both systems, we discuss a swapping state
measurement which exchanges quantum states between the system and the measuring
apparatus before the apparatus meter is read out. This swapping state
measurement has an advantage in gravitational-wave detection over contractive
state measurement in that the postmeasurement state of the system can be set to
a prescribed one, regardless of the outcome of the measurement.Comment: 11pages, 7figure
Dynamical control of quantum state transfer within hybrid open systems
We analyze quantum state-transfer optimization within hybrid open systems,
from a "noisy" (write-in) qubit to its "quiet" counterpart (storage qubit).
Intriguing interplay is revealed between our ability to avoid bath-induced
errors that profoundly depend on the bath-memory time and the limitations
imposed by leakage out of the operational subspace. Counterintuitively, under
no circumstances is the fastest transfer optimal (for a given transfer energy)
Variability of the Vela Pulsar-wind Nebula Observed with Chandra
The observations of the pulsar-wind nebula (PWN) around the Vela pulsar with
the Advanced CCD Imaging Spectrometer aboard the Chandra X-ray Observatory,
taken on 2000 April 30 and November 30, reveal its complex morphology
reminiscent of that of the Crab PWN. Comparison of the two observations shows
changes up to 30% in the surface brightness of the PWN features. Some of the
PWN elements show appreciable shifts, up to a few arcseconds (about 10^{16}
cm), and/or spectral changes. To elucidate the nature of the observed
variations, further monitoring of the Vela PWN is needed.Comment: 7 pages (incl. 3 embedded PS figures), AASTEX, uses emulateapj5.sty.
Submitted to ApJ Lett. For a high-resolution color PS image of Figure 3 (6.3
Mby), see http://www.astro.psu.edu/users/divas/velaneb_fig3.p
- …