2,706 research outputs found

    On the Early Holocene: Foraging to Early Agriculture

    Get PDF
    We consider a world in which the mode of food production, foraging or agriculture, is endogenous, and in which technology grows exogenously. Within a model of coalition formation, we allow individuals to rationally form cooperative communities (bands) of foragers or farmers. At the lowest levels of technology, equilibrium entails the grand coalition of foragers, a cooperative structure which avoids over-exploitation of the environment. But at a critical state of technology, the cooperative structure breaks down through an individually rational splintering of the band. At this stage, there can be an increase in work and through the over-exploitation of the environment, a food crisis. In the end, technological growth may lead to a one-way transition from foraging to agriculture.Foraging, Agriculture, Transition, Coalition Formation, Cooperation

    From Foraging to Agriculture

    Get PDF
    We consider a world in which the mode of food production, foraging or agriculture, is endogenous, and in which technology grows exogenously. Using a recent model of coalition formation, we allow individuals to rationally form cooperative communities (bands) of foragers or farmers. At the lowest levels of technology, equilibrium entails the grand coalition of foragers, a cooperative structure which avoids over-exploitation of the environment. But at a critical state of technology, the cooperative structure breaks down through an individually rational splintering of the band. At this stage there can be an increase in work and, through the over-exploitation of the environment, a food crisis. In the end, technological growth leads to a one-way transition from foraging to agriculture.

    The collisional relaxation of electrons in hot flaring plasma and inferring the properties of solar flare accelerated electrons from X-ray observations

    Get PDF
    X-ray observations are a direct diagnostic of fast electrons produced in solar flares, energized during the energy release process and directed towards the Sun. Since the properties of accelerated electrons can be substantially changed during their transport and interaction with the background plasma, a model must ultimately be applied to X-ray observations in order to understand the mechanism responsible for their acceleration. A cold thick target model is ubiquitously used for this task, since it provides a simple analytic relationship between the accelerated electron spectrum and the emitting electron spectrum in the X-ray source, with the latter quantity readily obtained from X-ray observations. However, such a model is inappropriate for the majority of solar flares in which the electrons propagate in a hot megaKelvin plasma, because it does not take into account the physics of thermalization of fast electrons. The use of a more realistic model, properly accounting for the properties of the background plasma, and the collisional diffusion and thermalization of electrons, can alleviate or even remove many of the traditional problems associated with the cold thick target model and the deduction of the accelerated electron spectrum from X-ray spectroscopy, such as the number problem and the need to impose an ad hoc low energy cut-off.Comment: 6 pages, 14th Annual International Astrophysics Conference Tampa proceeding

    A Classification Scheme For Turbulent Acceleration Processes In Solar Flares

    Full text link
    We establish a classification scheme for stochastic acceleration models involving low-frequency plasma turbulence in a strongly magnetized plasma. This classification takes into account both the properties of the accelerating electromagnetic field, and the nature of the transport of charged particles in the acceleration region. We group the acceleration processes as either resonant, non-resonant or resonant-broadened, depending on whether the particle motion is free-streaming along the magnetic field, diffusive or a combination of the two. Stochastic acceleration by moving magnetic mirrors and adiabatic compressions are addressed as illustrative examples. We obtain expressions for the momentum-dependent diffusion coefficient D(p)D(p), both for general forms of the accelerating force and for the situation when the electromagnetic force is wave-like, with a specified dispersion relation ω=ω(k)\omega=\omega(k). Finally, for models considered, we calculate the energy-dependent acceleration time, a quantity that can be directly compared with observations of the time profile of the radiation field produced by the accelerated particles, such as during solar flares.Comment: 45 pages, submitted to Astrophysical Journa

    Suppression of parallel transport in turbulent magnetized plasmas and its impact on the non-thermal and thermal aspects of solar flares

    Get PDF
    The transport of the energy contained in electrons, both thermal and suprathermal, in solar flares plays a key role in our understanding of many aspects of the flare phenomenon, from the spatial distribution of hard X-ray emission to global energetics. Motivated by recent RHESSI observations that point to the existence of a mechanism that confines electrons to the coronal parts of flare loops more effectively than Coulomb collisions, we here consider the impact of pitch-angle scattering off turbulent magnetic fluctuations on the parallel transport of electrons in flaring coronal loops. It is shown that the presence of such a scattering mechanism in addition to Coulomb collisional scattering can significantly reduce the parallel thermal and electrical conductivities relative to their collisional values. We provide illustrative expressions for the resulting thermoelectric coefficients that relate the thermal flux and electrical current density to the temperature gradient and the applied electric field. We then evaluate the effect of these modified transport coefficients on the flare coronal temperature that can be attained, on the post-impulsive-phase cooling of heated coronal plasma, and on the importance of the beam-neutralizing return current on both ambient heating and the energy loss rate of accelerated electrons. We also discuss the possible ways in which anomalous transport processes have an impact on the required overall energy associated with accelerated electrons in solar flares

    The role of diffusion in the transport of energetic electrons during solar flares

    Get PDF
    The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) being generally either treated as a small correction or even neglected. We here critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled rather effectively as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.Comment: 11 pages, to be published in Astrophysical Journa

    Heating and cooling of coronal loops with turbulent suppression of parallel heat conduction

    Get PDF
    Using the "enthalpy-based thermal evolution of loops" (EBTEL) model, we investigate the hydrodynamics of the plasma in a flaring coronal loop in which heat conduction is limited by turbulent scattering of the electrons that transport the thermal heat flux. The EBTEL equations are solved analytically in each of the two (conduction-dominated and radiation-dominated) cooling phases. Comparison of the results with typical observed cooling times in solar flares shows that the turbulent mean free-path λT\lambda_T lies in a range corresponding to a regime in which classical (collision-dominated) conduction plays at most a limited role. We also consider the magnitude and duration of the heat input that is necessary to account for the enhanced values of temperature and density at the beginning of the cooling phase and for the observed cooling times. We find through numerical modeling that in order to produce a peak temperature ≃1.5×107\simeq 1.5 \times 10^7~K and a 200~s cooling time consistent with observations, the flare heating profile must extend over a significant period of time; in particular, its lingering role must be taken into consideration in any description of the cooling phase. Comparison with observationally-inferred values of post-flare loop temperatures, densities, and cooling times thus leads to useful constraints on both the magnitude and duration of the magnetic energy release in the loop, as well as on the value of the turbulent mean free-path λT\lambda_T.Comment: 16 pages, 4 figures, to be published in The Astrophysical Journa

    From the Crescent City to Jaguar Hill: New Orleans' business interest in the Tehuantepec National Railroad of Mexico, 1849-1861

    Get PDF
    M.A.--University of Oklahoma, 2013Includes bibliographical references

    Excited states of neutral donor bound excitons in GaN

    Get PDF
    We investigate the excited states of a neutral donor bound exciton (D0X) in bulk GaN by means of high-resolution, polychromatic photoluminescence excitation (PLE) spectroscopy. The optically most prominent donor in our sample is silicon accompanied by only a minor contribution of oxygen—the key for an unambiguous assignment of excited states. Consequently, we can observe a multitude of Si0X-related excitation channels with linewidths down to 200 μeV. Two groups of excitation channels are identified, belonging either to rotational-vibrational or electronic excited states of the hole in the Si0X complex. Such identification is achieved by modeling the excited states based on the equations of motion for a Kratzer potential, taking into account the particularly large anisotropy of effective hole masses in GaN. Furthermore, several ground- and excited states of the exciton-polaritons and the dominant bound exciton are observed in the photoluminescence (PL) and PLE spectra, facilitating an estimate of the associated complex binding energies. Our data clearly show that great care must be taken if only PL spectra of D0X centers in GaN are analyzed. Every PL feature we observe at higher emission energies with regard to the Si0X ground state corresponds to an excited state. Hence, any unambiguous peak identification renders PLE spectra highly valuable, as important spectral features are obscured in common PL spectra. Here, GaN represents a particular case among the wide-bandgap, wurtzite semiconductors, as comparably low localization energies for common D0X centers are usually paired with large emission linewidths and the prominent optical signature of exciton-polaritons, making the sole analysis of PL spectra a challenging task.EC/H2020/749565/EU/Heat Transport and its Effects on the Performance of Nanostructured, Photonic Materials/PhotoHeatEffectDFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement
    • …
    corecore