306 research outputs found

    A rigorous benchmarking of methods for SARS-CoV-2 lineage abundance estimation in wastewater

    Full text link
    In light of the continuous transmission and evolution of SARS-CoV-2 coupled with a significant decline in clinical testing, there is a pressing need for scalable, cost-effective, long-term, passive surveillance tools to effectively monitor viral variants circulating in the population. Wastewater genomic surveillance of SARS-CoV-2 has arrived as an alternative to clinical genomic surveillance, allowing to continuously monitor the prevalence of viral lineages in communities of various size at a fraction of the time, cost, and logistic effort and serving as an early warning system for emerging variants, critical for developed communities and especially for underserved ones. Importantly, lineage prevalence estimates obtained with this approach aren't distorted by biases related to clinical testing accessibility and participation. However, the relative performance of bioinformatics methods used to measure relative lineage abundances from wastewater sequencing data is unknown, preventing both the research community and public health authorities from making informed decisions regarding computational tool selection. Here, we perform comprehensive benchmarking of 18 bioinformatics methods for estimating the relative abundance of SARS-CoV-2 (sub)lineages in wastewater by using data from 36 in vitro mixtures of synthetic lineage and sublineage genomes. In addition, we use simulated data from 78 mixtures of lineages and sublineages co-occurring in the clinical setting with proportions mirroring their prevalence ratios observed in real data. Importantly, we investigate how the accuracy of the evaluated methods is impacted by the sequencing technology used, the associated error rate, the read length, read depth, but also by the exposure of the synthetic RNA mixtures to wastewater, with the goal of capturing the effects induced by the wastewater matrix, including RNA fragmentation and degradation.Comment: For correspondence: [email protected]

    Novel Normalization Standard using Fluorescence

    Get PDF
    The Biotec_Dresden Team 2010 developed an approach where two fluorescent proteins are simultaneously expressed. The fact that one reporter, in our case RFP, is constitutively expressed allows to monitor cell growth. Secondly, an inducible promoter drives the expression of the second reporter, YFP in the case of the part tested. The constitutively expressed reporter protein (R1) serves as normalization factor for the inducible reporter (R2) by simple division

    SARS-CoV-2 Wastewater Genomic Surveillance: Approaches, Challenges, and Opportunities

    Full text link
    During the SARS-CoV-2 pandemic, wastewater-based genomic surveillance (WWGS) emerged as an efficient viral surveillance tool that takes into account asymptomatic cases and can identify known and novel mutations and offers the opportunity to assign known virus lineages based on the detected mutations profiles. WWGS can also hint towards novel or cryptic lineages, but it is difficult to clearly identify and define novel lineages from wastewater (WW) alone. While WWGS has significant advantages in monitoring SARS-CoV-2 viral spread, technical challenges remain, including poor sequencing coverage and quality due to viral RNA degradation. As a result, the viral RNAs in wastewater have low concentrations and are often fragmented, making sequencing difficult. WWGS analysis requires advanced computational tools that are yet to be developed and benchmarked. The existing bioinformatics tools used to analyze wastewater sequencing data are often based on previously developed methods for quantifying the expression of transcripts or viral diversity. Those methods were not developed for wastewater sequencing data specifically, and are not optimized to address unique challenges associated with wastewater. While specialized tools for analysis of wastewater sequencing data have also been developed recently, it remains to be seen how they will perform given the ongoing evolution of SARS-CoV-2 and the decline in testing and patient-based genomic surveillance. Here, we discuss opportunities and challenges associated with WWGS, including sample preparation, sequencing technology, and bioinformatics methods.Comment: V Munteanu and M Saldana contributed equally to this work A Smith and S Mangul jointly supervised this work For correspondence: [email protected]

    Effect of aliskiren on post-discharge outcomes among diabetic and non-diabetic patients hospitalized for heart failure: insights from the ASTRONAUT trial

    Get PDF
    Aims The objective of the Aliskiren Trial on Acute Heart Failure Outcomes (ASTRONAUT) was to determine whether aliskiren, a direct renin inhibitor, would improve post-discharge outcomes in patients with hospitalization for heart failure (HHF) with reduced ejection fraction. Pre-specified subgroup analyses suggested potential heterogeneity in post-discharge outcomes with aliskiren in patients with and without baseline diabetes mellitus (DM). Methods and results ASTRONAUT included 953 patients without DM (aliskiren 489; placebo 464) and 662 patients with DM (aliskiren 319; placebo 343) (as reported by study investigators). Study endpoints included the first occurrence of cardiovascular death or HHF within 6 and 12 months, all-cause death within 6 and 12 months, and change from baseline in N-terminal pro-B-type natriuretic peptide (NT-proBNP) at 1, 6, and 12 months. Data regarding risk of hyperkalaemia, renal impairment, and hypotension, and changes in additional serum biomarkers were collected. The effect of aliskiren on cardiovascular death or HHF within 6 months (primary endpoint) did not significantly differ by baseline DM status (P = 0.08 for interaction), but reached statistical significance at 12 months (non-DM: HR: 0.80, 95% CI: 0.64-0.99; DM: HR: 1.16, 95% CI: 0.91-1.47; P = 0.03 for interaction). Risk of 12-month all-cause death with aliskiren significantly differed by the presence of baseline DM (non-DM: HR: 0.69, 95% CI: 0.50-0.94; DM: HR: 1.64, 95% CI: 1.15-2.33; P < 0.01 for interaction). Among non-diabetics, aliskiren significantly reduced NT-proBNP through 6 months and plasma troponin I and aldosterone through 12 months, as compared to placebo. Among diabetic patients, aliskiren reduced plasma troponin I and aldosterone relative to placebo through 1 month only. There was a trend towards differing risk of post-baseline potassium ≥6 mmol/L with aliskiren by underlying DM status (non-DM: HR: 1.17, 95% CI: 0.71-1.93; DM: HR: 2.39, 95% CI: 1.30-4.42; P = 0.07 for interaction). Conclusion This pre-specified subgroup analysis from the ASTRONAUT trial generates the hypothesis that the addition of aliskiren to standard HHF therapy in non-diabetic patients is generally well-tolerated and improves post-discharge outcomes and biomarker profiles. In contrast, diabetic patients receiving aliskiren appear to have worse post-discharge outcomes. Future prospective investigations are needed to confirm potential benefits of renin inhibition in a large cohort of HHF patients without D

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Concentrations of labile dissolved forms of Cu, Zn, Pb, and Cu in waters of the Kara Sea and Ob and Yenisey estuaries

    No full text
    Concentrations of labile dissolved forms of Cu, Zn, Pb, and Cu in waters of the Kara Sea and Ob and Yenisey estuaries measured on board during Cruise 49 of R/V Dmitry Mendeleev
    corecore