494 research outputs found
Radiation Damping in the Photoionization of Fe^{14+}
A theoretical investigation of photoabsorption and photoionization of
Fe^{14+} extending beyond an earlier frame transformation R-matrix
implementation is performed using a fully-correlated, Breit-Pauli R-matrix
formulation including both fine-structure splitting of strongly-bound
resonances and radiation damping. The radiation damping of
resonances gives rise to a resonant photoionization cross section that is
significantly lower than the total photoabsorption cross section. Furthermore,
the radiation-damped photoionization cross section is found to be in good
agreement with recent experimental results once a global shift in energy of
eV is applied. These findings have important implications.
Firstly, the presently available synchrotron experimental data are applicable
only to photoionization processes and not to photoabsorption; the latter is
required in opacity calculations. Secondly, our computed cross section, for
which the L-shell ionization threshold is aligned with the NIST value, shows a
series of Rydberg resonances that are uniformly 3-4 eV
higher in energy than the corresponding experimental profiles, indicating that
the L-shell threshold energy values currently recommended by NIST are likely in
error.Comment: 4 pages, 1 figures, and 2 table
Nitrogen K-shell photoabsorption
Reliable atomic data have been computed for the spectral modeling of the
nitrogen K lines, which may lead to useful astrophysical diagnostics. Data sets
comprise valence and K-vacancy level energies, wavelengths, Einstein
-coefficients, radiative and Auger widths and K-edge photoionization cross
sections. An important issue is the lack of measurements which are usually
employed to fine-tune calculations so as to attain spectroscopic accuracy. In
order to estimate data quality, several atomic structure codes are used and
extensive comparisons with previous theoretical data have been carried out. In
the calculation of K photoabsorption with the Breit--Pauli -matrix method,
both radiation and Auger damping, which cause the smearing of the K edge, are
taken into account. This work is part of a wider project to compute atomic data
in the X-ray regime to be included in the database of the popular {\sc xstar}
modeling code
Recommended from our members
Collisional Ionization Equilibrium for Optically Thin Plasmas
Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni
Dot-ring nanostructure: rigorous analysis of many-electron effects
We discuss the quantum dot-ring nanostructure (DRN) as canonical example of a nanosystem, for which the interelectronic interactions can be evaluated exactly. The system has been selected due to its tunability, i.e., its electron wave functions can be modified much easier than in, e.g., quantum dots. We determine many-particle states for Ne = 2 and 3 electrons and calculate the 3- and 4-state interaction parameters, and discuss their importance. For that purpose, we combine the first- and second-quantization schemes and hence are able to single out the component single-particle contributions to the resultant many-particle state. The method provides both the ground- and the first-excited-state energies, as the exact diagonalization of the many-particle Hamiltonian is carried out. DRN provides one of the few examples for which one can determine theoretically all interaction microscopic parameters to a high accuracy. Thus the evolution of the single-particle vs. many-particle contributions to each state and its energy can be determined and tested with the increasing system size. In this manner, we contribute to the wave-function engineering with the interactions included for those few-electron systems
A Comprehensive X-ray Absorption Model for Atomic Oxygen
An analytical formula is developed to represent accurately the
photoabsorption cross section of O I for all energies of interest in X-ray
spectral modeling. In the vicinity of the Kedge, a Rydberg series expression is
used to fit R-matrix results, including important orbital relaxation effects,
that accurately predict the absorption oscillator strengths below threshold and
merge consistently and continuously to the above-threshold cross section.
Further minor adjustments are made to the threshold energies in order to
reliably align the atomic Rydberg resonances after consideration of both
experimental and observed line positions. At energies far below or above the
K-edge region, the formulation is based on both outer- and inner-shell direct
photoionization, including significant shake-up and shake-off processes that
result in photoionization-excitation and double photoionization contributions
to the total cross section. The ultimate purpose for developing a definitive
model for oxygen absorption is to resolve standing discrepancies between the
astronomically observed and laboratory measured line positions, and between the
inferred atomic and molecular oxygen abundances in the interstellar medium from
XSTAR and SPEX spectral models
Susceptibility testing by polymerase chain reaction DNA quantitation: A method to measure drug resistance of human immunodeficiency virus type 1 isolates
Polymerase chain reaction (PCR) DNA quantitation (PDQ) susceptibility testing rapidly and directly measures nucleoside sensitivity of human immunodeficiency virus type 1 (HIV-1) isolates. PCR is used to quantitate the amount of HIV-1 DNA synthesized after in vitro infection of peripheral blood mononuclear cells. The relative amounts of HIV-1 DNA in cell lysates from cultures maintained at different drug concentrations reflect drug inhibition of virus replication. The rusults of PDQ susceptibility testing of 2- or 3-day cultures are supported by assays measuring HIV-1 p24 antigen production in supernatants of 7- or 10-day cultures. DNA sequence analyses to identify mutations in the reverse transcriptase gene that cause resistance to 3′-azido-3′-deoxythymidine also support the PDQ results. With the PDQ method, both infectivity titration and susceptibility testing can be performed on supernatants from primary cultures of peripheral blood mononuclear cells. PDQ susceptibility testing should facilitate epidemiologic studies of the clinical significance of drug-resistant HIV-1 isolates
Dielectronic Recombination of Ground-State and Metastable Li+ Ions
Dielectronic recombination has been investigated for Delta-n = 1 resonances
of ground-state Li+(1s^2) and for Delta-n = 0 resonances of metastable Li+(1s2s
^3S). The ground-state spectrum shows three prominent transitions between 53
and 64 eV, while the metastable spectrum exhibits many transitions with
energies < 3.2 eV. Reasonably good agreement of R-matrix, LS coupling
calculations with the measured recombination rate coefficient is obtained. The
time dependence of the recombination rate yields a radiative lifetime of 52.2
+- 5.0 s for the 2 ^3S level of Li+.Comment: Submitted to Phys. Rev. A; REVTeX, 4 pages, 3 figure
Recommended from our members
New Collisional Ionization Equilibrium Calculations for Optically Thin Plasmas
Reliably interpreting spectra from electron-ionized laboratory and cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have carried out state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Mg-like ions of all elements from He to Zn as well as for Al- like to Ar-like ions of Fe. We have also carried out state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the most recently recommended electron impact ionization data, we present improved collisional ionization equilibrium (CIE) calculations. Here, as an example, we present our calculated fractional ionic abundances for iron using these data and compare them with those from the previously recommended CIE calculations
Absorption and scattering by interstellar dust: XMM-Newton observation of Cyg X-2
We present results of the XMM-Newton observation on the bright X-ray binary
Cyg X-2. In our analysis we focus upon the absorption and scattering of the
X-ray emission by interstellar dust. The scattering halo around Cyg X-2,
observed with the CCD detector EPIC-pn, is well detected up to ~7 arcmin and
contributes ~5-7% to the total source emission at 1 keV, depending on the dust
size distribution model considered. For the first time spatially resolved
spectroscopy of a scattering halo is performed. In the halo spectrum we clearly
detect the signature of the interstellar dust elements: O, Mg, and Si. The
spectral modeling of the halo shows a major contribution of silicates (olivine
and pyroxene). The spatial analysis of the halo shows that the dust is smoothly
distributed toward Cyg X-2 at least for ~60% of the path to the source. Within
the instrumental limits, the data do not show preference for a specific dust
size distribution; namely the Mathis, Rumpl & Nordsieck (1977) or the
Weingartner & Draine (2001) model. We used the Mie theory to compute the
differential scattering cross section. The RGS data were used to investigate
the ISM absorption, in particular the region of the oxygen edge. Combining the
RGS results with the information on dust grains provided by the EPIC-pn
spectrum of the halo we estimate a column density for dust absorption by
oxygen, provided that it is locked in silicate grains (abridged).Comment: 15 pages, 12 figures. Accepted for publication in Astronomy and
Astrophysic
- …