35 research outputs found

    Symmetric powers in abstract homotopy categories

    Get PDF
    We study symmetric powers in the homotopy categories of abstract closed symmetric monoidal model categories, in both unstable and stable settings. As an outcome, we prove that symmetric powers preserve the Nisnevich and étale homotopy type in the unstable and stable motivic homotopy theories of schemes over a base. More precisely, if f is a weak equivalence of motivic spaces, or a weak equivalence between positively cofibrant motivic spectra, with respect to the Nisnevich or étale topology, then all symmetric powers are weak equivalences too. This gives left derived symmetric powers in the corresponding motivic homotopy categories of schemes over a base, which aggregate into a categorical λ-structures on these categories

    Categorical measures for finite group actions

    Get PDF
    Given a variety with a finite group action, we compare its equivariant categorical measure, that is, the categorical measure of the corresponding quotient stack, and the categorical measure of the extended quotient. Using weak factorization for orbifolds, we show that for a wide range of cases, these two measures coincide. This implies, in particular, a conjecture of Galkin and Shinder on categorical and motivic zeta-functions of varieties. We provide examples showing that, in general, these two measures are not equal. We also give an example related to a conjecture of Polishchuk and Van den Bergh, showing that a certain condition in this conjecture is indeed necessary

    Geometric Phantom Categories

    Get PDF
    In this paper we give a construction of phantom categories, i.e. admissible triangulated subcategories in bounded derived categories of coherent sheaves on smooth projective varieties that have trivial Hochschild homology and trivial Grothendieck group. We also prove that these phantom categories are phantoms in a stronger sense, namely, they have trivial K-motives and, hence, all their higher K-groups are trivial too.Comment: LaTeX, 18 page

    Positive model structures for abstract symmetric spectra

    Get PDF
    We give a general method of constructing positive stable model structures for symmetric spectra over an abstract simplicial symmetric monoidal model category. The method is based on systematic localization, in Hirschhorn’s sense, of a certain positive projective model structure on spectra, where positivity basically means the truncation of the zero level. The localization is by the set of stabilizing morphisms or their truncated version

    Picard group of moduli of hyperelliptic curves

    No full text
    The main subject of this work is the difference between the coarse moduli space and the stack of hyperelliptic curves. We compute their Picard groups, giving explicit description of the generators. We get an application to the non-existence of a tautological family over the coarse moduli space
    corecore