6,456 research outputs found

    On decays of Z' into unparticle stuff

    Get PDF
    We study the decay of a Z' - boson into U -unparticle and a photon. The extended Landau-Yang theorem is used. The clear photon signal would make the decay Z' \rightarrow \gamma U as an additional contribution mode for study of unparticle physics.Comment: 11 pages, 3 figures, paper accepted for publication by Advances in High Energy Physics journa

    Resolution of puzzles from the LSND, KARMEN, and MiniBooNE experiments

    Full text link
    This work has attempted to reconcile puzzling neutrino oscillation results from the LSND, KARMEN and MiniBooNE experiments. We show that the LSND evidence for νˉμ→νˉe\bar{\nu}_\mu \to \bar{\nu}_e oscillations, its long-standing disagreement with the results from KARMEN, and the anomalous event excess observed by MiniBooNE in νμ\nu_\mu and νˉμ\bar{\nu}_\mu data could all be explained by the existence of a heavy sterile neutrino (νh\nu_h). All these results are found to be consistent with each other assuming that the νh\nu_h is created in νμ\nu_\mu neutral-current interactions and decays radiatively into a photon and a light neutrino. Assuming the νh\nu_h is produced through mixing with νμ\nu_\mu, the combined analysis of the LSND and MiniBooNe excess events suggests that the νh\nu_h mass is in the range from 40 to 80 MeV, the mixing strength is ∣Uμh∣2≃10−3−10−2|U_{\mu h}|^2 \simeq 10^{-3}-10^{-2}, and the lifetime is τνh≲10−9\tau_{\nu_h} \lesssim 10^{-9} s. Surprisingly, this LSND-MiniBooNE parameters window is found to be unconstrained by the results from the most sensitive experiments searching for heavy neutrino. We set new limits on ∣Uμh∣2|U_{\mu h}|^2 for the LSND-MiniBooNE favorable mass region from the precision measurements of the Michel spectrum by the TWIST experiment. The results obtained provide a strong motivation for a sensitive search for the νh\nu_h in a near future K K decay or neutrino experiments, which fit well in the existing/planned experimental programs at CERN or FNAL. The question of whether the heavy neutrino is Dirac or Majorana particle is briefly discussed.Comment: 24 pages, 28 figures, version to appear in PR

    Two-body Photodisintegration of 4^{4}He with Full Final State Interaction

    Full text link
    The cross sections of the processes 4^4He(γ,p\gamma,p)3^3H and 4^4He(γ,n\gamma,n)3^3He are calculated taking into account the full final state interaction via the Lorentz integral transform (LIT) method. This is the first consistent microscopic calculation beyond the three--body breakup threshold. The results are obtained with a semirealistic central NN potential including also the Coulomb force. The cross sections show a pronounced dipole peak at 27 MeV which lies within the rather broad experimental band. At higher energies, where experimental uncertainties are considerably smaller, one finds a good agreement between theory and experiment. The calculated sum of three-- and four--body photodisintegration cross sections is also listed and is in fair agreement with the data.Comment: 18 pages, 6 figure

    Exciton correlations in coupled quantum wells and their luminescence blue shift

    Full text link
    In this paper we present a study of an exciton system where electrons and holes are confined in double quantum well structures. The dominating interaction between excitons in such systems is a dipole - dipole repulsion. We show that the tail of this interaction leads to a strong correlation between excitons and substantially affects the behavior of the system. Making use of qualitative arguments and estimates we develop a picture of the exciton - exciton correlations in the whole region of temperature and concentration where excitons exist. It appears that at low concentration degeneracy of the excitons is accompanied with strong multi-particle correlation so that the system cannot be considered as a gas. At high concentration the repulsion suppresses the quantum degeneracy down to temperatures that could be much lower than in a Bose gas with contact interaction. We calculate the blue shift of the exciton luminescence line which is a sensitive tool to observe the exciton - exciton correlations.Comment: 27 pages in PDF and DVI format, 8 figure

    Comment on "Correlation of the Highest-Energy Cosmic Rays with Nearby Extragalactic Objects"

    Full text link
    We argue that the data published by the Pierre Auger Collaboration (arXiv:0711.2256) disfavor at 99% confidence level their hypothesis that most of the highest-energy cosmic rays are protons from nearby astrophysical sources, either Active Galactic Nuclei or other objects with a similar spatial distribution.Comment: 1000 words, 2 figures, scicite.st

    Radiative Losses in Plasma Accelerators

    Full text link
    We investigate the dynamics of a relativistic electron in a strongly nonlinear plasma wave in terms of classical mechanics by taking into account the action of the radiative reaction force. The two limiting cases are considered. In the first case where the energy of the accelerated electrons is low, the electron makes many betatron oscillations during the acceleration. In the second case where the energy of the accelerated electrons is high, the betatron oscillation period is longer than the electron residence time in the accelerating phase. We show that the force of radiative friction can severely limit the rate of electron acceleration in a plasma accelerator.Comment: 17 pages, 5 figure

    The Lorentz Integral Transform (LIT) method and its applications to perturbation induced reactions

    Full text link
    The LIT method has allowed ab initio calculations of electroweak cross sections in light nuclear systems. This review presents a description of the method from both a general and a more technical point of view, as well as a summary of the results obtained by its application. The remarkable features of the LIT approach, which make it particularly efficient in dealing with a general reaction involving continuum states, are underlined. Emphasis is given on the results obtained for electroweak cross sections of few--nucleon systems. Their implications for the present understanding of microscopic nuclear dynamics are discussed.Comment: 83 pages, 31 figures. Topical review. Corrected typo
    • …
    corecore