1,473 research outputs found

    Unified analysis of SGD-type methods

    Full text link
    This note focuses on a simple approach to the unified analysis of SGD-type methods from (Gorbunov et al., 2020) for strongly convex smooth optimization problems. The similarities in the analyses of different stochastic first-order methods are discussed along with the existing extensions of the framework. The limitations of the analysis and several alternative approaches are mentioned as well.Comment: Part of the Encyclopedia of Optimization. 8 page

    Single-Call Stochastic Extragradient Methods for Structured Non-monotone Variational Inequalities: Improved Analysis under Weaker Conditions

    Full text link
    Single-call stochastic extragradient methods, like stochastic past extragradient (SPEG) and stochastic optimistic gradient (SOG), have gained a lot of interest in recent years and are one of the most efficient algorithms for solving large-scale min-max optimization and variational inequalities problems (VIP) appearing in various machine learning tasks. However, despite their undoubted popularity, current convergence analyses of SPEG and SOG require a bounded variance assumption. In addition, several important questions regarding the convergence properties of these methods are still open, including mini-batching, efficient step-size selection, and convergence guarantees under different sampling strategies. In this work, we address these questions and provide convergence guarantees for two large classes of structured non-monotone VIPs: (i) quasi-strongly monotone problems (a generalization of strongly monotone problems) and (ii) weak Minty variational inequalities (a generalization of monotone and Minty VIPs). We introduce the expected residual condition, explain its benefits, and show how it can be used to obtain a strictly weaker bound than previously used growth conditions, expected co-coercivity, or bounded variance assumptions. Equipped with this condition, we provide theoretical guarantees for the convergence of single-call extragradient methods for different step-size selections, including constant, decreasing, and step-size-switching rules. Furthermore, our convergence analysis holds under the arbitrary sampling paradigm, which includes importance sampling and various mini-batching strategies as special cases.Comment: 37th Conference on Neural Information Processing Systems (NeurIPS 2023
    • …
    corecore