7 research outputs found

    Diagnostic and prognostic impact of cytokeratin 18 expression in human tumors: a tissue microarray study on 11,952 tumors

    No full text
    Background!#!Cytokeratin 18 (CK18) is an intermediate filament protein of the cytokeratin acidic type I group and is primarily expressed in single-layered or 'simple' epithelial tissues and carcinomas of different origin.!##!Methods!#!To systematically determine CK18 expression in normal and cancerous tissues, 11,952 tumor samples from 115 different tumor types and subtypes (including carcinomas, mesenchymal and biphasic tumors) as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry in a tissue microarray format.!##!Results!#!CK18 was expressed in normal epithelial cells of most organs but absent in normal squamous epithelium. At least an occasional weak CK18 positivity was seen in 90 of 115 (78.3%) tumor types. Wide-spread CK18 positivity was seen in 37 (31.9%) of tumor entities, including adenocarcinomas of the lung, prostate, colon and pancreas as well as ovarian cancer. Tumor categories with variable CK18 immunostaining included cancer types arising from CK18 positive precursor cells but show CK18 downregulation in a fraction of cases, tumor types arising from CK18 negative precursor cells occasionally exhibiting CK18 neo-expression, tumors derived from normal tissues with variable CK18 expression, and tumors with a mixed differentiation. CK18 downregulation was for example seen in renal cell cancers and breast cancers, whereas CK18 neo-expression was found in squamous cell carcinomas of various origins. Down-regulation of CK18 in invasive breast carcinomas of no special type and clear cell renal cell carcinomas (ccRCC) was related to adverse tumor features in both tumors (p ≤ 0.0001) and poor patient prognosis in ccRCC (p = 0.0088). Up-regulation of CK18 in squamous cell carcinomas was linked to high grade and lymph node metastasis (p < 0.05). In summary, CK18 is consistently expressed in various epithelial cancers, especially adenocarcinomas.!##!Conclusions!#!Down-regulation or loss of CK18 expression in cancers arising from CK18 positive tissues as well as CK18 neo-expression in cancers originating from CK18 negative tissues is linked to cancer progression and may reflect tumor dedifferentiation

    Large-Scale Tissue Microarray Evaluation Corroborates High Specificity of High-Level Arginase-1 Immunostaining for Hepatocellular Carcinoma

    No full text
    Arginase-1 catalyzes the conversion of arginine to ornithine and urea. Because of its predominant expression in hepatocytes, it serves as a marker for hepatocellular carcinoma, although other tumor entities can also express arginase-1. To comprehensively determine arginase-1 expression in normal and neoplastic tissues, tissue microarrays containing 14,912 samples from 117 different tumor types and 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry. In normal tissues, arginase-1 was expressed in the liver, the granular layer of the epidermis, and in granulocytes. Among tumors, a nuclear and cytoplasmic arginase-1 immunostaining was predominantly observed in hepatocellular carcinoma, where 96% of 49 cancers were at least moderately positive. Although 22 additional tumor categories showed occasional arginase immunostaining, strong staining was exceedingly rare in these entities. Staining of a few tumor cells was observed in squamous cell carcinomas of various sites. Staining typically involved maturing cells with the beginning of keratinization in these tumors and was significantly associated with a low grade in 635 squamous cell carcinomas of various sites (p = 0.003). Teratoma, urothelial carcinoma and pleomorphic adenomas sometimes also showed arginase expression in areas with squamous differentiation. In summary, arginase-1 immunohistochemistry is highly sensitive and specific for hepatocellular carcinoma if weak and focal staining is disregarded

    E-Cadherin expression in human tumors: a tissue microarray study on 10,851 tumors

    No full text
    Background!#!The E-Cadherin gene (CDH1, Cadherin 1), located at 16q22.1 encodes for a calcium-dependent membranous glycoprotein with an important role in cellular adhesion and polarity maintenance.!##!Methods!#!To systematically determine E-Cadherin protein expression in normal and cancerous tissues, 14,637 tumor samples from 112 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry in a tissue microarray format.!##!Results!#!E-Cadherin was strongly expressed in normal epithelial cells of most organs. From 77 tumor entities derived from cell types normally positive for E-Cadherin, 35 (45.5%) retained at least a weak E-Cadherin immunostaining in ≥99% of cases and 61 (79.2%) in ≥90% of cases. Tumors with the highest rates of E-Cadherin loss included Merkel cell carcinoma, anaplastic thyroid carcinoma, lobular carcinoma of the breast, and sarcomatoid and small cell neuroendocrine carcinomas of the urinary bladder. Reduced E-Cadherin expression was linked to higher grade (p = 0.0009), triple negative receptor status (p = 0.0336), and poor prognosis (p = 0.0466) in invasive breast carcinoma of no special type, triple negative receptor status in lobular carcinoma of the breast (p = 0.0454), advanced pT stage (p = 0.0047) and lymph node metastasis in colorectal cancer (p < 0.0001), and was more common in recurrent than in primary prostate cancer (p < 0.0001). Of 29 tumor entities derived from E-Cadherin negative normal tissues, a weak to strong E-Cadherin staining could be detected in at least 10% of cases in 15 different tumor entities (51.7%). Tumors with the highest frequency of E-Cadherin upregulation included various subtypes of testicular germ cell tumors and renal cell carcinomas (RCC). E-Cadherin upregulation was more commonly seen in malignant than in benign soft tissue tumors (p = 0.0104) and was associated with advanced tumor stage (p = 0.0276) and higher grade (p = 0.0035) in clear cell RCC, and linked to advanced tumor stage (p = 0.0424) and poor prognosis in papillary RCC (p ≤ 0.05).!##!Conclusion!#!E-Cadherin is consistently expressed in various epithelial cancers. Down-regulation or loss of E-Cadherin expression in cancers arising from E-Cadherin positive tissues as well as E-Cadherin neo-expression in cancers arising from E-Cadherin negative tissues is linked to cancer progression and may reflect tumor dedifferentiation

    Angiotensin-Converting Enzyme 2 Protein Is Overexpressed in a Wide Range of Human Tumour Types: A Systematic Tissue Microarray Study on >15,000 Tumours

    No full text
    Angiotensin-converting enzyme 2 (ACE2) is a regulator in the renin-angiotensin system. ACE2 expression was analysed immunohistochemically in 15,306 samples from 119 tumour types and in 608 samples of 76 normal tissue types. In normal tissue, ACE2 was most abundant in testis and corpus luteum, kidney, small intestine and capillaries of selected organs. At least an occasional weak ACE2 positivity of tumour cells was seen in 83 of 119 (70%) tumour types. ACE2 tumour cell positivity was particularly frequent in papillary (94%) and clear cell (86%) renal cell carcinoma, colorectal adenocarcinoma (81%), mucinous ovarian cancer (61%), cholangiocarcinoma (58%), hepatocellular carcinoma (56%), and in adenocarcinomas of the stomach (47%), pancreas (42%), and the lung (35%). ACE2-positive capillaries were found in 409/12,644 (3%) of analysable tumours, most frequently in tumours with endocrine/neuroendocrine activity. Presence of ACE2-positive capillaries was linked to low stage in papillary thyroid cancer and low grade in neuroendocrine neoplasms. In conclusion, ACE2 expression can occur both in tumour cells and tumour-associated capillaries in a broad variety of different tumour types at highly variable frequencies

    Cadherin-16 (CDH16) immunohistochemistry: a useful diagnostic tool for renal cell carcinoma and papillary carcinomas of the thyroid

    No full text
    Abstract Cadherin-16 (CDH16) plays a role in the embryonal development in kidney and thyroid. Downregulation of CDH16 RNA was found in papillary carcinomas of the thyroid. To determine the expression of CDH16 in tumors and to assess the diagnostic utility a tissue microarray containing 15,584 samples from 152 different tumor types as well as 608 samples of 76 different normal tissue types was analyzed. A membranous CDH16 immunostaining was predominantly seen in thyroid, kidney, cauda epididymis, and mesonephric remnants. In the thyroid, CDH16 staining was seen in 100% of normal samples, 86% of follicular adenomas, 60% of follicular carcinomas, but only 7% of papillary carcinomas (p < 0.0001). CDH16 positivity was frequent in nephrogenic adenomas (100%), oncocytomas (98%), chromophobe (97%), clear cell (85%), and papillary (76%) renal cell carcinomas (RCCs), various subtypes of carcinoma of the ovary (16–56%), various subtyped of carcinomas of the uterus (18–40%), as well as in various subtypes of neuroendocrine neoplasms (4–26%). Nineteen further tumor entities showed a weak to moderate CDH16 staining in up to 8% of cases. Our data suggest CDH16 as a potential diagnostic marker—as a part of a panel—for the identification of papillary carcinomas of the thyroid, nephrogenic adenomas, and the distinction of renal cell tumors from other neoplasms

    High prevalence of p16 staining in malignant tumors.

    No full text
    p16 (CDKN2A) is a member of the INK4 class of cell cycle inhibitors, which is often dysregulated in cancer. However, the prevalence of p16 expression in different cancer types is controversial. 15,783 samples from 124 different tumor types and 76 different normal tissue types were analyzed by immunohistochemistry in a tissue microarray format. p16 was detectable in 5,292 (45.0%) of 11,759 interpretable tumors. Except from adenohypophysis in islets of Langerhans, p16 staining was largely absent in normal tissues. In cancer, highest positivity rates were observed in uterine cervix squamous cell carcinomas (94.4%), non-invasive papillary urothelial carcinoma, pTaG2 (100%), Merkel cell carcinoma (97.7%), and small cell carcinomas of various sites of origin (54.5%-100%). All 124 tumor categories showed at least occasional p16 immunostaining. Comparison with clinico-pathological data in 128 vulvar, 149 endometrial, 295 serous ovarian, 396 pancreatic, 1365 colorectal, 284 gastric, and 1245 urinary bladder cancers, 910 breast carcinomas, 620 clear cell renal cell carcinomas, and 414 testicular germ cell tumors revealed only few statistically significant associations. Comparison of human papilloma virus (HPV) status and p16 in 497 squamous cell carcinomas of different organs revealed HPV in 80.4% of p16 positive and in 20.6% of p16 negative cancers (p<0.0001). It is concluded, that a positive and especially strong p16 immunostaining is a feature for malignancy which may be diagnostically useful in lipomatous, urothelial and possibly other tumors. The imperfect association between p16 immunostaining and HPV infection with high variability between different sites of origin challenges the use of p16 immunohistochemistry as a surrogate for HPV positivity, except in tumors of cervix uteri and the penis
    corecore