115 research outputs found
Phenolic content and potential bioactivity of apple juice as affected by thermal and ultrasound pasteurization
Thermal (T) and ultrasound (US) pasteurization processes were applied to apple juice and the phenolic compounds (TPC) were quantified before and after in vitro digestion by HPLC-DAD-ESI-MSn, with their bioaccessibility ascertained. Digested samples were analysed for their inhibitory capacity against α-glucosidase. Since some of the compounds exhibit fluorescence, both steady state and time-resolved fluorescence methods were used to investigate the binding to a blood transport protein, human serum albumin (HSA). It was found that processing induced an increase in the TPC content, which was more pronounced when US was applied. In contrast, digestion reduced the TPC content, evening out the overall effect. Still T and US pasteurized juices exhibited a higher quantity of TPC upon digestion as compared to the raw sample. No correlation was found between the TPC content and α-glucosidase inhibition, as the T and US pasteurized juices showed the highest and lowest inhibitory capacities against the enzyme, respectively. This is indicative that other compounds, such as those formed upon thermal treatment, may be involved in the antidiabetic effect of apple juice. The fluorescence study showed that binding occurred to HSA, at slightly different rates for different species present in the US treated extract. Considering energy consumption, US pasteurization is the most power consuming treatment despite its shorter duration. Overall, no univocal indication on the best pasteurization process can be gathered. Thus, it is necessary to define the desired target in order to drive technological interventions by a customized approach.</p
Prunus spinosa extract loaded in biomimetic nanoparticles evokes in vitro anti-inflammatory and wound healing activities
Prunus spinosa fruits (PSF) contain different phenolic compounds showing antioxidant and anti-inflammatory activities. Innovative drug delivery systems such as biomimetic nanoparti-cles could improve the activity of PSF extract by promoting (i) the protection of payload into the lipidic bilayer, (ii) increased accumulation to the diseased tissue due to specific targeting properties, (iii) improved biocompatibility, (iv) low toxicity and increased bioavailability. Using membrane proteins extracted from human monocyte cell line THP-1 cells and a mixture of phospholipids, we formulated two types of PSF-extract-loaded biomimetic vesicles differing from each other for the presence of either 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-dioleoyl-sn-glycero-3-phospho-(1\u2032-rac-glycerol) (DOPG). The biological activity of free extract (PSF), compared to both types of extract-loaded vesicles (PSF-DOPCs and PSF-DOPGs) and empty vesicles (DOPCs and DOPGs), was evaluated in vitro on HUVEC cells. PSF-DOPCs showed preferential incorporation of the extract. When enriched into the nanovesicles, the extract showed a significantly increased anti-inflammatory activity, and a pronounced wound-healing effect (with PSF-DOPCs more efficient than PSF-DOPG) compared to free PSF. This innovative drug delivery system, combining nutraceuti-cal active ingredients into a biomimetic formulation, represents a possible adjuvant therapy for the treatment of wound healing. This nanoplatform could be useful for the encapsulation/enrichment of other nutraceutical products with short stability and low bioavailability
Analysis of motoneuron responses to composite synaptic volleys (computer simulation study)
This paper deals with the analysis of changes in motoneuron (MN) firing evoked by repetitively applied stimuli aimed toward extracting information about the underlying synaptic volleys. Spike trains were obtained from computer simulations based on a threshold-crossing model of tonically firing MN, subjected to stimulation producing postsynaptic potentials (PSPs) of various parameters. These trains were analyzed as experimental results, using the output measures that were previously shown to be most effective for this purpose: peristimulus time histogram, raster plot and peristimulus time intervalgram. The analysis started from the effects of single excitatory and inhibitory PSPs (EPSPs and IPSPs). The conclusions drawn from this analysis allowed the explanation of the results of more complex synaptic volleys, i.e., combinations of EPSPs and IPSPs, and the formulation of directions for decoding the results of human neurophysiological experiments in which the responses of tonically firing MNs to nerve stimulation are analyzed
Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles
<p>Abstract</p> <p>Background</p> <p>High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons). This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random) applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability.</p> <p>Methods</p> <p>Subjects (n = 6) were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses) and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise) applied to the triceps surae muscle group. In an additional investigation, M<sub>max </sub>and F-waves were elicited at different times before or after the vibratory stimulation.</p> <p>Results</p> <p>The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves.</p> <p>Conclusions</p> <p>These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC) due to the spinal recruitment of motoneurons. The association of vibration and electrical stimulation could be beneficial for many therapeutic interventions and vibration-based exercise programs. The command for the vibration-induced extra torques presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms.</p
Dipolar cortico-muscular electrical stimulation: a novel method that enhances motor function in both - normal and spinal cord injured mice
<p>Abstract</p> <p>Background</p> <p>Electrical stimulation of the central and peripheral nervous systems is a common tool that is used to improve functional recovery after neuronal injury.</p> <p>Methods</p> <p>Here we described a new configuration of electrical stimulation as it was tested in anesthetized control and spinal cord injury (SCI) mice. Constant voltage output was delivered through two electrodes. While the negative voltage output (ranging from -1.8 to -2.6 V) was delivered to the muscle via transverse wire electrodes (diameter, 500 μm) located at opposite ends of the muscle, the positive output (ranging from + 2.4 to +3.2 V) was delivered to the primary motor cortex (M1) (electrode tip, 100 μm). The configuration was named dipolar cortico-muscular stimulation (dCMS) and consisted of 100 pulses (1 ms pulse duration, 1 Hz frequency).</p> <p>Results</p> <p>In SCI animals, after dCMS, cortically-elicited muscle contraction improved markedly at the contralateral (456%) and ipsilateral (457%) gastrocnemius muscles. The improvement persisted for the duration of the experiment (60 min). The enhancement of cortically-elicited muscle contraction was accompanied by the reduction of M1 maximal threshold and the potentiation of spinal motoneuronal evoked responses at the contralateral (313%) and ipsilateral (292%) sides of the spinal cord. Moreover, spontaneous activity recorded from single spinal motoneurons was substantially increased contralaterally (121%) and ipsilaterally (54%). Interestingly, spinal motoneuronal responses and muscle twitches evoked by the test stimulation of non-treated M1 (received no dCMS) were significantly enhanced as well. Similar results obtained from normal animals albeit the changes were relatively smaller.</p> <p>Conclusion</p> <p>These findings demonstrated that dCMS could improve functionality of corticomotoneuronal pathway and thus it may have therapeutic potential.</p
Locomotor changes in length and EMG activity of feline medial gastrocnemius muscle following paralysis of two synergists
The mechanism of the compensatory increase in electromyographic activity (EMG) of a cat ankle extensor during walking shortly after paralysis of its synergists is not fully understood. It is possible that due to greater ankle flexion in stance in this situation, muscle spindles are stretched to a greater extent and, thus, contribute to the EMG enhancement. However, also changes in force feedback and central drive may play a role. The aim of the present study was to investigate the short-term (1- to 2-week post-op) effects of lateral gastrocnemius (LG) and soleus (SO) denervation on muscle fascicle and muscle–tendon unit (MTU) length changes, as well as EMG activity of the intact medial gastrocnemius (MG) muscle in stance during overground walking on level (0%), downslope (−50%, presumably enhancing stretch of ankle extensors in stance) and upslope (+50%, enhancing load on ankle extensors) surfaces. Fascicle length was measured directly using sonomicrometry, and MTU length was calculated from joint kinematics. For each slope condition, LG-SO denervation resulted in an increase in MTU stretch and peak stretch velocity of the intact MG in early stance. MG muscle fascicle stretch and peak stretch velocity were also higher than before denervation in downslope walking. Denervation significantly decreased the magnitude of MG fascicle shortening and peak shortening velocity during early stance in level and upslope walking. MG EMG magnitude in the swing and stance phases was substantially greater after denervation, with a relatively greater increase during stance of level and upslope walking. These results suggest that the fascicle length patterns of MG muscle are significantly altered when two of its synergists are in a state of paralysis. Further, the compensatory increase in MG EMG is likely mediated by enhanced MG length feedback during downslope walking, enhanced feedback from load-sensitive receptors during upslope walking and enhanced central drive in all walking conditions
Myths and misconceptions about hypnosis and suggestion: Separating fact and fiction
We present 21 prominent myths and misconceptions about hypnosis in order to promulgate accurate information and to highlight questions for future research. We argue that these myths and misconceptions have (a) fostered a skewed and stereotyped view of hypnosis among the lay public, (b) discouraged participant involvement in potentially helpful hypnotic interventions, and (c) impeded the exploration and application of hypnosis in scientific and practitioner communities. Myths reviewed span the view that hypnosis produces a trance or special state of consciousness and allied myths on topics related to hypnotic interventions; hypnotic responsiveness and the modification of hypnotic suggestibility; inducing hypnosis; and hypnosis and memory, awareness, and the experience of nonvolition. By demarcating myth from mystery and fact from fiction, and by highlighting what is known as well as what remains to be discovered, the science and practice of hypnosis can be advanced and grounded on a firmer empirical footing
- …