319 research outputs found

    Controlling two-species Mott-insulator phses in an optical lattice to form an array of dipolar molecules

    Full text link
    We consider the transfer of a two-species Bose-Einstein condensate into an optical lattice with a density such that that a Mott-insulator state with one atom per species per lattice site is obtained in the deep lattice regime. Depending on collision parameters the result could be either a `mixed' or a `separated' Mott-insulator phase. Such a `mixed' two-species insulator could then be photo-associated into an array of dipolar molecules suitable for quantum computation or the formation of a dipolar molecular condensate. For the case of a 87^{87}Rb-41^{41}K two-species BEC, however, the large inter-species scattering length makes obtaining the desired `mixed' Mott insulator phase difficult. To overcome this difficulty we investigate the effect of varying the lattice frequency on the mean-field interaction and find a favorable parameter regime under which a lattice of dipolar molecules could be generated

    Response of an atomic Bose-Einstein condensate to a rotating elliptical trap

    Full text link
    We investigate numerically the response of an atomic Bose-Einstein condensate to a weakly-elliptical rotating trap over a large range of rotation frequencies. We analyse the quadrupolar shape oscillation excited by rotation, and discriminate between its stable and unstable regimes. In the latter case, where a vortex lattice forms, we compare with experimental observations and find good agreement. By examining the role of thermal atoms in the process, we infer that the process is temperature-independent, and show how terminating the rotation gives control over the number of vortices in the lattice. We also study the case of critical rotation at the trap frequency, and observe large centre-of-mass oscillations of the condensate.Comment: 14 pages, 8 figure

    Magnetic Phase Transition of the Perovskite-type Ti Oxides

    Full text link
    Properties and mechanism of the magnetic phase transition of the perovskite-type Ti oxides, which is driven by the Ti-O-Ti bond angle distortion, are studied theoretically by using the effective spin and pseudo-spin Hamiltonian with strong Coulomb repulsion. It is shown that the A-type antiferromagnetic(AFM(A)) to ferromagnetic(FM) phase transition occurs as the Ti-O-Ti bond angle is decreased. Through this phase transition, the orbital state is hardly changed so that the spin-exchange coupling along the c-axis changes nearly continuously from positive to negative and takes approximately zero at the phase boundary. The resultant strong two-dimensionality in the spin coupling causes a rapid suppression of the critical temperature as is observed experimentally.Comment: 9 pages, 5 figure

    Magnetic and Orbital States and Their Phase Transition of the Perovskite-Type Ti Oxides: Strong Coupling Approach

    Full text link
    The properties and mechanism of the magnetic phase transition of the perovskite-type Ti oxides, which is driven by the Ti-O-Ti bond angle distortion, are studied theoretically by using the effective spin and pseudospin Hamiltonian with strong Coulomb repulsion. It is shown that the A-type antiferromagnetic (AFM(A)) to ferromagnetic (FM) phase transition occurs as the Ti-O-Ti bond angle is decreased. Through this phase transition, the orbital state changes only little whereas the spin-exchange coupling along the c-axis is expected to change from positive to negative nearly continuously and approaches zero at the phase boundary. The resultant strong two-dimensionality in the spin coupling causes rapid suppression of the critical temperature, as observed experimentally. It may induce large quantum fluctuations in this region.Comment: 13 pages, 15 figure

    Rate limit for photoassociation of a Bose-Einstein condensate

    Full text link
    We simulate numerically the photodissociation of molecules into noncondensate atom pairs that accompanies photoassociation of an atomic Bose-Einstein condensate into a molecular condensate. Such rogue photodissociation sets a limit on the achievable rate of photoassociation. Given the atom density \rho and mass m, the limit is approximately 6\hbar\rho^{2/3}/m. At low temperatures this is a more stringent restriction than the unitary limit of scattering theory.Comment: 5 pgs, 18 refs., 3 figs., submitted to Phys. Rev. Let

    Ferromagnetism in a lattice of Bose condensates

    Full text link
    We show that an ensemble of spinor Bose-Einstein condensates confined in a one dimensional optical lattice can undergo a ferromagnetic phase transition and spontaneous magnetization arises due to the magnetic dipole-dipole interaction. This phenomenon is analogous to ferromagnetism in solid state physics, but occurs with bosons instead of fermions.Comment: 4 pages, 2 figure

    Formation of Two Component Bose Condensate During the Chemical Potential Curve Crossing

    Get PDF
    In this article we study the formation of the two modes Bose-Einstein condensate and the correlation between them. We show that beyond the mean field approximation the dissociation of a molecular condensate due to the chemical potential curve crossing leads to the formation of two modes condensate. We also show that these two modes are correlated in a two mode squeezed state.Comment: 10 page

    Free Expansion of a Weakly-interacting Dipolar Fermi Gas

    Full text link
    We theoretically investigate a polarized dipolar Fermi gas in free expansion. The inter-particle dipolar interaction deforms phase-space distribution in trap and also in the expansion. We exactly predict the minimal quadrupole deformation in the expansion for the high-temperature Maxwell-Boltzmann and zero-temperature Thomas-Fermi gases in the Hartree-Fock and Landau-Vlasov approaches. In conclusion, we provide a proper approach to develop the time-of-flight method for the weakly-interacting dipolar Fermi gas and also reveal a scaling law associated with the Liouville's theorem in the long-time behaviors of the both gases

    Magnetism in a lattice of spinor Bose condensates

    Full text link
    We study the ground state magnetic properties of ferromagnetic spinor Bose-Einstein condensates confined in a deep optical lattices. In the Mott insulator regime, the ``mini-condensates'' at each lattice site behave as mesoscopic spin magnets that can interact with neighboring sites through both the static magnetic dipolar interaction and the light-induced dipolar interaction. We show that such an array of spin magnets can undergo a ferromagnetic or anti-ferromagnetic phase transition under the magnetic dipolar interaction depending on the dimension of the confining optical lattice. The ground-state spin configurations and related magnetic properties are investigated in detail

    Probing dipolar effects with condensate shape oscillation

    Full text link
    We discuss the low energy shape oscillations of a magnetic trapped atomic condensate including the spin dipole interaction. When the nominal isotropic s-wave interaction strength becomes tunable through a Feshbach resonance (e.g. as for 85^{85}Rb atoms), anisotropic dipolar effects are shown to be detectable under current experimental conditions [E. A. Donley {\it et al.}, Nature {\bf 412}, 295 (2001)].Comment: revised version, submitte
    corecore