15 research outputs found
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory
The advent of the Auger Engineering Radio Array (AERA) necessitates the
development of a powerful framework for the analysis of radio measurements of
cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air
shower radio emission in coincidence with the surface particle detectors and
fluorescence telescopes of the Pierre Auger Observatory, the radio analysis
functionality had to be incorporated in the existing hybrid analysis solutions
for fluoresence and surface detector data. This goal has been achieved in a
natural way by extending the existing Auger Offline software framework with
radio functionality. In this article, we lay out the design, highlights and
features of the radio extension implemented in the Auger Offline framework. Its
functionality has achieved a high degree of sophistication and offers advanced
features such as vectorial reconstruction of the electric field, advanced
signal processing algorithms, a transparent and efficient handling of FFTs, a
very detailed simulation of detector effects, and the read-in of multiple data
formats including data from various radio simulation codes. The source code of
this radio functionality can be made available to interested parties on
request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to
author list and references in v
Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory
We present the results of searches for dipolar-type anisotropies in different
energy ranges above eV with the surface detector array of
the Pierre Auger Observatory, reporting on both the phase and the amplitude
measurements of the first harmonic modulation in the right-ascension
distribution. Upper limits on the amplitudes are obtained, which provide the
most stringent bounds at present, being below 2% at 99% for EeV
energies. We also compare our results to those of previous experiments as well
as with some theoretical expectations.Comment: 28 pages, 11 figure
Influenza virus proteins as factors involved in interspecies transmission
Influenza A viruses cause recurrent epidemics and global pandemics. One of the unique features of influenza virus is the ability to overcome interspecies barrier. Reassortment of viral genes and the accumulation of mutations contribute to the emergence of new influenza virus variants. The replication of influenza A virus in a specific host depends on many factors e.g. activity of viral proteins, host response system and environmental conditions. In this review the role of viral proteins as a condition for crossing the species barriers is discussed
Properties and performance of the prototype instrument for the Pierre Auger Observatory
Copyright © 2003 Elsevier B.V. All rights reserved.Construction of the first stage of the Pierre Auger Observatory has begun. The aim of the Observatory is to collect unprecedented information about cosmic rays above 1018 eV. The first phase of the project, the construction and operation of a prototype system, known as the engineering array, has now been completed. It has allowed all of the sub-systems that will be used in the full instrument to be tested under field conditions. In this paper, the properties and performance of these sub-systems are described and their success illustrated with descriptions of some of the events recorded thus far.Auger Collaboration, ..., J. A. Bellido, ..., R. W. Clay, ..., B. R. Dawson, ..., G. J. Thornton, ..., N. R. Wild, et al.http://www.elsevier.com/wps/find/journaldescription.cws_home/505701/description#descriptio
Correlation of the Highest-energy Cosmic Rays with the Positions of Nearby Active Galactic Nuclei.
Data collected by the Pierre Auger Observatory provide evidence for
anisotropy in the arrival directions of the cosmic rays with the highest
energies, which are correlated with the positions of relatively nearby active
galactic nuclei (AGN) \cite{science}. The correlation has maximum significance
for cosmic rays with energy greater than ~ 6x10^{19}$ eV and AGN at a distance
less than ~ 75 Mpc. We have confirmed the anisotropy at a confidence level of
more than 99% through a test with parameters specified {\em a priori}, using an
independent data set. The observed correlation is compatible with the
hypothesis that cosmic rays with the highest energies originate from
extra-galactic sources close enough so that their flux is not significantly
attenuated by interaction with the cosmic background radiation (the
Greisen-Zatsepin-Kuz'min effect). The angular scale of the correlation observed
is a few degrees, which suggests a predominantly light composition unless the
magnetic fields are very weak outside the thin disk of our galaxy. Our present
data do not identify AGN as the sources of cosmic rays unambiguously, and other
candidate sources which are distributed as nearby AGN are not ruled out. We
discuss the prospect of unequivocal identification of individual sources of the
highest-energy cosmic rays within a few years of continued operation of the
Pierre Auger Observatory.Comment: 33 pages, 8 figures, submitted to Astropart. phys. Now match the
published versio
Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory
International audienceWe present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or 'multiplets') which exhibit a correlation between arrival direction and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cosmic rays. We describe the largest multiplets found and compute the probability that they appeared by chance from an isotropic distribution. We find no statistically significant evidence for the presence of multiplets arising from magnetic deflections in the present data
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science. © The Author(s) 2019. Published by Oxford University Press
AUGER FD: Detector response to simulated showers and real event topologies
The performance of the Auger Fluorescence telescope is discussed on the basis of a mass production chain.
In order to get a realistic estimate of the detector resolution, a large number of fully simulated CORSIKA
showers have been used for this study. The propagation through the atmosphere and the detector response are taken into account and simulated in detail. Results for the the case of monocular reconstruction are presented here. No quality cuts for the event reconstruction have been applied so far. Finally, a schematic overview of the expected event topologies is given together with the display of a real event recently collected