85 research outputs found
Characterization of phospholipase A2 in monocytic cell lines. Functional and biochemical aspects of membrane association
Cytosolic phospholipase A2 from human monocytic cells: characterization of substrate specificity and Ca2+-dependent membrane association
Cell type-specific regulation of CCN2 protein expression by PI3K–AKT–FoxO signaling
The biological activity of connective tissue growth factor (CTGF, CCN2) is regulated at the level of intracellular signaling leading to gene expression, and by its extracellular interaction partners which determine the functional outcome of CCN2 action. In this overview, we summarize the data which provide evidence that one of the major signaling pathways, phosphatidylinositol-3 kinase (PI3K)–AKT signaling, shows a remarkable cell type-dependence in terms of regulation of CCN2 expression. In smooth muscle cells, fibroblasts, and epithelial cells, inhibition of this pathway either reduced CCN2 expression or was not involved in CCN2 gene expression depending on the stimulus used. In microvascular endothelial cells by contrast, activation of PI3K–AKT signaling was inversely related to CCN2 expression. Upregulation of CCN2 upon inhibition of PI3K–AKT was also observed in primary cultures of human endothelial cells (HUVEC) exposed to laminar flow in an in vitro flow-through system. In different types of endothelial cells, FoxO transcription factors, which are negatively regulated by AKT, were identified as potent activators of CCN2 gene expression. In HUVEC, we observed a correlation between enhanced nuclear localization of FoxO1 and increased synthesis of CCN2 protein in areas of non-uniform shear stress. These data indicate that FoxO proteins are key regulators of CCN2 gene expression which determine the effect of PI3K–AKT activation in terms of CCN2 regulation. Short summary Phosphatidylinositol-3 kinase (PI3K)–AKT signaling shows a remarkable cell type-dependence in terms of regulation of CCN2 expression. In endothelial cells activation of PI3K - AKT signaling was inversely related to CCN2 expression. FoxO transcription factors, which are negatively regulated by AKT, were identified as potent activators of CCN2 gene expression
COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord
BACKGROUND: While multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) are primarily inflammatory and degenerative disorders respectively, there is increasing evidence for shared cellular mechanisms that may affect disease progression, particularly glial responses. Cyclooxygenase 2 (COX-2) inhibition prolongs survival and cannabinoids ameliorate progression of clinical disease in animal models of ALS and MS respectively, but the mechanism is uncertain. Therefore, three key molecules known to be expressed in activated microglial cells/macrophages, COX-2, CB2 and P2X7, which plays a role in inflammatory cascades, were studied in MS and ALS post-mortem human spinal cord. METHODS: Frozen human post mortem spinal cord specimens, controls (n = 12), ALS (n = 9) and MS (n = 19), were available for study by immunocytochemistry and Western blotting, using specific antibodies to COX-2, CB2 and P2X7, and markers of microglial cells/macrophages (CD 68, ferritin). In addition, autoradiography for peripheral benzodiazepine binding sites was performed on some spinal cord sections using [3H] (R)-PK11195, a marker of activated microglial cells/macrophages. Results of immunostaining and Western blotting were quantified by computerized image and optical density analysis respectively. RESULTS: In control spinal cord, few small microglial cells/macrophages-like COX-2-immunoreactive cells, mostly bipolar with short processes, were scattered throughout the tissue, whilst MS and ALS specimens had significantly greater density of such cells with longer processes in affected regions, by image analysis. Inflammatory cell marker CD68-immunoreactivity, [3H] (R)-PK11195 autoradiography, and double-staining against ferritin confirmed increased production of COX-2 by activated microglial cells/macrophages. An expected 70-kDa band was seen by Western blotting which was significantly increased in MS spinal cord. There was good correlation between the COX-2 immunostaining and optical density of the COX-2 70-kDa band in the MS group (r = 0.89, P = 0.0011, n = 10). MS and ALS specimens also had significantly greater density of P2X7 and CB2-immunoreactive microglial cells/macrophages in affected regions. CONCLUSION: It is hypothesized that the known increase of lesion-associated extracellular ATP contributes via P2X7 activation to release IL-1 beta which in turn induces COX-2 and downstream pathogenic mediators. Selective CNS-penetrant COX-2 and P2X7 inhibitors and CB2 specific agonists deserve evaluation in the progression of MS and ALS
Strategies for blocking the fibrogenic actions of connective tissue growth factor (CCN2): From pharmacological inhibition in vitro to targeted siRNA therapy in vivo
Connective tissue growth factor (CCN2) is a major pro-fibrotic factor that frequently acts downstream of transforming growth factor beta (TGF-β)-mediated fibrogenic pathways. Much of our knowledge of CCN2 in fibrosis has come from studies in which its production or activity have been experimentally attenuated. These studies, performed both in vitro and in animal models, have demonstrated the utility of pharmacological inhibitors (e.g. tumor necrosis factor alpha (TNF-α), prostaglandins, peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists, statins, kinase inhibitors), neutralizing antibodies, antisense oligonucleotides, or small interfering RNA (siRNA) to probe the role of CCN2 in fibrogenic pathways. These investigations have allowed the mechanisms regulating CCN2 production to be more clearly defined, have shown that CCN2 is a rational anti-fibrotic target, and have established a framework for developing effective modalities of therapeutic intervention in vivo
Regulation of connective tissue growth factor (ccn2; ctgf) gene expression in human mesangial cells: modulation by HMG CoA reductase inhibitors (statins)
Stability control of valerian ground material and extracts: a new HPLC-method for the routine quantification of valerenic acids and lignans
A new HPLC-method for the separation of medium polar and nonpolar compounds in preparations of Valeriana officinalis was established for stability control. Powdered valerian root and a commercial ethanolic valerian extract were investigated for apparent differences in stability behaviour. Storage conditions were chosen according to the ICH-guidelines. Changes in composition of valerenic acids and lignans were observed depending on storage conditions and packaging materials. Hydroxyvalerenic acid, pinoresinol and hydroxypinoresinol were identified as degradation products in Valerian root, especially during accelerated testing. Ethanolic extracts appeared not to be as sensitive for chemical degradation under climatic influences compared to the crude plant material, and showed no increase in the amounts of lignan-aglyka. In comparison, extracts showed high sensitivity on changes of physical properties like loss on drying and viscosity
Contribution of Src-FAK signaling to the induction of connective tissue growth factor in renal fibroblasts
Expression of connective tissue growth factor (CTGF) is sensitive to reorganization of the actin cytoskeleton, but also to alterations in cell morphology due to extracellular forces, for example, cyclic stretching or mechanical loading. Dynamic alterations of focal adhesion proteins were thus proposed to modulate CTGF induction. Immortalized human renal fibroblasts were cultured in or on top of preformed collagen-1 gels. Proteins were detected by immunofluorescence and quantified by Western blotting. Fibroblasts cultured in/on collagen gels resembled cells in vivo by their spindle-like morphology, absence of actin stress fibers, small punctiform focal contacts, and low levels of CTGF expression. Disassembly of microtubules by short-term treatment with colchicine induced cell rounding, cortical recruitment of patchy F-actin, reorganization of focal contacts into strong clusters, and upregulation of CTGF, all of which were dependent on RhoA-Rho-kinase signaling. Clustering of focal adhesion sites activated Src-family kinases and focal adhesion kinase (FAK). Interference with Src activity by PP2 had no effect on the morphological alterations but decreased tyrosine phosphorylation of focal adhesion proteins and almost completely prevented upregulation of CTGF. Furthermore, inhibition of phosphatidylinositol 3-kinase reduced CTGF expression. On the other hand, when the fibroblasts were cultured on a rigid matrix, that is collagen-coated plates, strong focal complexes prevented the dynamic alterations, and RhoA-mediated upregulation of CTGF expression was independent of Src-FAK signaling. Assembly of focal adhesion proteins regulates CTGF expression, providing a link between actin network, adhesion receptors, and CTGF-mediated functions such as synthesis of extracellular matrix proteins
- …
