20 research outputs found

    An Introduction to Actinobacteria

    Get PDF
    Actinobacteria, which share the characteristics of both bacteria and fungi, are widely distributed in both terrestrial and aquatic ecosystems, mainly in soil, where they play an essential role in recycling refractory biomaterials by decomposing complex mixtures of polymers in dead plants and animals and fungal materials. They are considered as the biotechnologically valuable bacteria that are exploited for its secondary metabolite production. Approximately, 10,000 bioactive metabolites are produced by Actinobacteria, which is 45% of all bioactive microbial metabolites discovered. Especially Streptomyces species produce industrially important microorganisms as they are a rich source of several useful bioactive natural products with potential applications. Though it has various applications, some Actinobacteria have its own negative effect against plants, animals, and humans. On this context, this chapter summarizes the general characteristics of Actinobacteria, its habitat, systematic classification, various biotechnological applications, and negative impact on plants and animals

    A theory of change roadmap for universal health coverage in India

    Get PDF
    The Theory of Change (ToC) approach is one of the methodologies that the Lancet Citizens' Commission has chosen to build a roadmap to achieving Universal Healthcare (UHC) in India in the next 10 years. The work of the Citizens' Commission is organized around five workstreams: Finance, Human Resources for Health (HRH), Citizens' Engagement, Governance, and Technology. Five ToC workshops were conducted, one for each workstream. Individual workshop outputs were then brought together in two cross-workstream workshops where a sectoral Theory of Change for UHC was derived. Seventy-four participants, drawn from the Commission or invited for their expertise, and representing diverse stakeholders and sectors concerned with UHC, contributed to these workshops. A reimagined healthcare system achieves (1) enhanced transparency, accountability, and responsiveness; (2) improved quality of health services; (3) accessible, comprehensive, connected, and affordable care for all; (4) equitable, people-centered and safe health services; and (5) trust in the health system. For a mixed system like India's, achieving these high ideals will require all actors, public, private and civil society, to collaborate and bring about this transformation. During the consultation, paradigm shifts emerged, which were structural or systemic assumptions that were deemed necessary for the realization of all interventions. Critical points of consensus also emerged from the workshops, such as the need for citizen-centricity, greater efficiency in the use of public finances for health care, shifting to team-based managed care, empowerment of frontline health workers, the appropriate use of technology across all phases of patient care, and moving toward an articulation of positive health and wellbeing. Critical areas of contention that remained related to the role of the private sector, especially around financing and service delivery. Few issues for further consultation and research were noted, such as payment for performance across both public and private sectors, the use of accountability metrics across both public and private sectors, and the strategies for addressing structural barriers to realizing the proposed paradigm shifts. As the ToCs were developed in expert groups, citizens' consultations and consultations with administrative leaders were recommended to refine and ground the ToC, and therefore the roadmap to realize UHC, in people's lived reality

    The impact of polio eradication on routine immunization and primary health care: A mixed-methods study

    Get PDF
    Background: After 2 decades of focused efforts to eradicate polio, the impact of eradication activities on health systems continues to be controversial. This study evaluated the impact of polio eradication activities on routine immunization (RI) and primary healthcare (PHC).Methods: Quantitative analysis assessed the effects of polio eradication campaigns on RI and maternal healthcare coverage. A systematic qualitative analysis in 7 countries in South Asia and sub-Saharan Africa assessed impacts of polio eradication activities on key health system functions, using data from interviews, participant observation, and document review.Results: Our quantitative analysis did not find compelling evidence of widespread and significant effects of polio eradication campaigns, either positive or negative, on measures of RI and maternal healthcare. Our qualitative analysis revealed context-specific positive impacts of polio eradication activities in many of our case studies, particularly disease surveillance and cold chain strengthening. These impacts were dependent on the initiative of policy makers. Negative impacts, including service interruption and public dissatisfaction, were observed primarily in districts with many campaigns per year.Conclusions: Polio eradication activities can provide support for RI and PHC, but many opportunities to do so remain missed. Increased commitment to scaling up best practices could lead to significant positive impacts

    The impact of polio eradication on routine immunization and primary health care: a mixed-methods study.

    Get PDF
    BACKGROUND: After 2 decades of focused efforts to eradicate polio, the impact of eradication activities on health systems continues to be controversial. This study evaluated the impact of polio eradication activities on routine immunization (RI) and primary healthcare (PHC). METHODS: Quantitative analysis assessed the effects of polio eradication campaigns on RI and maternal healthcare coverage. A systematic qualitative analysis in 7 countries in South Asia and sub-Saharan Africa assessed impacts of polio eradication activities on key health system functions, using data from interviews, participant observation, and document review. RESULTS: Our quantitative analysis did not find compelling evidence of widespread and significant effects of polio eradication campaigns, either positive or negative, on measures of RI and maternal healthcare. Our qualitative analysis revealed context-specific positive impacts of polio eradication activities in many of our case studies, particularly disease surveillance and cold chain strengthening. These impacts were dependent on the initiative of policy makers. Negative impacts, including service interruption and public dissatisfaction, were observed primarily in districts with many campaigns per year. CONCLUSIONS: Polio eradication activities can provide support for RI and PHC, but many opportunities to do so remain missed. Increased commitment to scaling up best practices could lead to significant positive impacts

    REFRESH: REDEFINE for Face Recognition Using SURE Homogeneous Cores

    No full text
    In this paper we present design and analysis of a scalable real-time Face Recognition (FR) module to perform 450 recognitions per second. We introduce an algorithm for FR, which is a combination of Weighted Modular Principle Component Analysis and Radial Basis Function Neural Networks. This algorithm offers better recognition accuracy in various practical conditions than algorithms used in existing architectures for real-time FR. To meet real-time requirements, a Scalable Parallel Pipelined Architecture (SPPA) is developed by realizing the above FR algorithm as independent parallel streams and sub-streams of computations. SPPA is capable of supporting large databases maintained in external (DDR) memory. By casting the computations in a stream into hardware, we present the design of a Scalable Unit for Region Evaluation (SURE) core. Using SURE cores as computer elements in a massively parallel CGRA, like REDFINE, we provide a FR system on REDEFINE called REFRESH. We report FPGA and ASIC synthesis results for SPPA and REFRESH. Through analysis using these results, we show that excellent scalability and added programmability in REFRESH makes it a flexible and favorable solution for real-time FR

    Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial pathogens of female infertility cases

    Get PDF
    Recently, biosynthesis of silver nanoparticles using bacteria, fungus and plants has emerged as a simple and viable alternative to more complex physical and chemical synthetic procedures. The present investigation explains rapid and extracellular synthesis of silver nanoparticles using fungus Fusarium oxysporum NGD and characterization of the synthesized silver nanoparticles using UV-Vis spectroscopy, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis. The size range of the synthesized silver nanoparticles was around 16.3–70 nm. The FTIR studies showed major peaks of proteins involved in the synthesis of silver nanoparticles. Further, antibacterial effect of the silver nanoparticles against multidrug resistant pathogens Enterobacter sp. ANT 02 [HM803168], Pseudomonas aeruginosa ANT 04 [HM803170], Klebsiella pneumoniae ANT 03 [HM803169] and Escherichia coli ANT 01 [HM803167] was tested using turbidometric assay at 10, 20, 30, 40 μg AgNPs/ml alone and in combination with ampicillin using agar well diffusion assay. All the resistant bacteria were found to be susceptible to the antibiotic in the presence of the silver nanoparticles

    Hardware Solution For Real-time Face Recognition

    No full text
    The objective of this paper is to come up with a scalable modular hardware solution for real-time Face Recognition (FR) on large databases. Existing hardware solutions use algorithms with low recognition accuracy suitable for real-time response. In addition, database size for these solutions is limited by on-chip resources making them unsuitable for practical real-time applications. Due to high computational complexity we do not choose algorithms in literature with superior recognition accuracy. Instead, we come up with a combination of Weighted Modular Principle Component Analysis (WMPCA) and Radial Basis Function Neural Network (RBFNN) which outperforms algorithms used in existing hardware solutions on highly illumination and pose variant face databases. We propose a hardware solution for real-time FR which uses parallel streams to perform independent modular computations. A salient feature of proposed hardware solution is that we store a major part of data on off-chip memory in a novel format, so that latencies experienced accessing off-chip memory does not impact performance. This enables us to work on databases of very large sizes. To test functional correctness, the proposed architecture is synthesized and tested on Virtex-6 LX550T FPGA. This emulated system is able to perform 450 recognitions per second on images of size 128 x 128 with 450 classes

    Multi-functional nano silver: A novel disruptive and theranostic agent for pathogenic organisms in real-time

    No full text
    The present study was aimed at evaluating the fluorescence property, sporicidal potency against Bacillus and Clostridium endospores, and surface disinfecting ability of biogenic nano silver. The nano silver was synthesized using an actinobacterial cell-filtrate. The fluorescence property as well as imaging facilitator potency of this nano silver was verified adopting spectrofluorometer along with fluorescent and confocal laser scanning microscope wherein strong emission and bright green fluorescence, respectively, on the entire spore surface was observed. Subsequently, the endospores of B. subtilis, B. cereus, B. amyloliquefaciens, C. perfringens and C. difficile were treated with physical sporicides, chemical sporicides and nano silver, in which the nano silver brought about pronounced inhibition even at a very low concentration. Finally, the environmental surface-sanitizing potency of nano silver was investigated adopting cage co-contamination assay, wherein vital organs of mice exposed to the nano silver-treated cage did not show any signs of pathological lesions, thus signifying the ability of nano silver to completely disinfect the spore or reduce the count required for infection. Taken these observations together, we have shown the multi-functional biological properties of the nano silver, synthesized using an actinobacterial cell-filtrate, which could be of application in advanced diagnostics, biomedical engineering and therapeutics in the near future.Published versio
    corecore