28 research outputs found

    A comparative evaluation of physicochemical properties and photocatalytic efficiencies of cerium oxide and copper oxide nanofluids

    Get PDF
    Copper oxide (CuO) and cerium oxide (CeO2) of various concentrations have been prepared through an ultrasonically assisted dispersion of CuO and CeO2 nanoparticles (NPs) in which water and nanofluids (NFs) were formulated. The morphological properties of the CuO and CeO2 NPs are reported. Few of the physicochemical properties that can influence the photocatalytic activities of the NFs are evaluated, such as viscosity, activation energy, density, thermal conductivity, electrical conductivity, alternating current (AC) conductivity, pH, stability, refractive index and optical band gap of the CuO and CeO2 NFs. Viscosity studies have been made at four different temperatures (303 K, 308 K, 313 K and 318 K) and the activation energy is calculated and compared between the CuO and CeO2 NFs. The thermal conductivity of the two NFs is calculated and compared. Electrical conductivity is measured for CuO and CeO2 NFs using an impedance analyzer at different frequencies at 303 K. The dielectric constant and AC conductivity were studied. The electrical conductivity and pH of the prepared NFs are measured and the results are compared. The stability of the NFs is determined from Zeta potential values obtained from dynamic light scattering measurements. UV-Visible diffuse reflectance measurements were used to deduce the optical bandgap of the respective metal oxide NPs in the NFs. The photocatalytic efficiencies of the CuO NFs and CeO2 NFs were evaluated using methylene blue (MB) as the model dye. The rate constant for the photodegradation of MB was higher for CuO NF as compared CeO2 NF and also higher than simple NPs-based photocatalysts. A plausible explanation for the role of NFs over the simple NPs-based photocatalytic solution is presented

    Editorial: Special Issue on “Emerging Nanostructured Catalytic Materials for Energy and Environmental Applications”

    No full text
    In recent years, there has been a great demand for the rational design and development of novel catalytic materials at the nanoscale (1–100 nm), with a view to more accurately and efficiently control reaction pathways due to their high surface area and intrinsic properties [...

    One-Step Preparation of Nickel Nanoparticle-Based Magnetic Poly(Vinyl Alcohol) Gels

    No full text
    Magnetic nanoparticles (MNPs) are of great interest due to their unique properties, especially in biomedical applications. MNPs can be incorporated into other matrixes to prepare new functional nanomaterials. In this work, we described a facile, one-step strategy for the synthesis of magnetic poly(vinyl alcohol) (mPVA) gels. In the synthesis, nickel nanoparticles and cross-linked mPVA gels were simultaneously formed. Ni nanoparticles (NPs) were also incorporated into a stimuli-responsive polymer to result in multiresponsive gels. The size of and distribution of the Ni particles within the mPVA gels were controlled by experimental conditions. The mPVA gels were characterized by field emission scanning electron microscope, X-ray diffraction, magnetic measurements, and thermogravimetric analysis. The new mPVA gels are expected to have applications in drug delivery and biotechnology

    Enantioselective Determination of Polycyclic Musks in River and Wastewater by GC/MS/MS

    No full text
    The separation of chiral compounds is an interesting and challenging topic in analytical chemistry, especially in environmental fields. Enantioselective degradation or bioaccumulation has been observed for several chiral pollutants. Polycyclic musks are chiral and are widely used as fragrances in a variety of personal care products such as soaps, shampoos, cosmetics and perfumes. In this study, the gas chromatographic separation of chiral polycyclic musks, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclo-penta-γ-2-benzopyrane (HHCB), 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetra-hydronaphthalene (AHTN), 6-acetyl-1,1,2,3,3,5-hexamethylindane (AHDI), 5-acetyl-1,1,2,6-tetramethyl-3-iso-propylindane (ATII), and 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone (DPMI) was achieved on modified cyclodextrin stationary phase (heptakis (2,3-di-O-methyl-6-O-tert-butyl-dimethylsilyl-β-CD in DV-1701)). Separation techniques are coupled to tandem mass spectrometry (MS-MS), as it provides the sensitivity and selectivity needed. River and wastewaters (influents and effluents of wastewater treatment plants (WWTPs)) in the Nakdong River were investigated with regard to the concentrations and the enantiomeric ratios of polycyclic musks. HHCB was most frequently detected in river and wastewaters, and an enantiomeric enrichment was observed in the effluents of one of the investigated wastewater treatment plants (WWTPs). We reported the contamination of river and wastewaters in Korea by chiral polycyclic musks. The results of this investigation suggest that enantioselective transformation may occur during wastewater treatment

    Introduction to various sustainable energy storage technologies

    No full text
    The world is stepping forward toward the development of technologies to derive energy from sustainable resources and the technologists are thriving hard to mitigate the challenges such as shortage of fuels and clean/renewable energy due to the rapid increase in global population, energy consumption owing to lifestyle improvements, high costs for energy, global warming, and various environmental issues. In this chapter, we overview a wide range of enabling sustainable energy storage technologies, that include long-term energy storage (compressed air, battery, pumped hydroelectric, and hydrogen-based), and short-term energy storage (supercapacitor, flywheel, and superconducting magnetic) systems. We will focus on these storage technologies which form the core of the technological innovations needed to design and develop renewable energy. We have highlighted the salient features of each of these technologies and compared them in terms of their power/energy density, and cost to meet the global challenges, and their ability to manage the scarcity of existing resources and competitiveness in meeting sustainability standards

    Improving Photovoltaic Properties of P3HT:IC60BA through the Incorporation of Small Molecules

    No full text
    We investigated the role of a functional solid additive, 2,3-dihydroxypyridine (DHP), in influencing the optoelectronic, morphological, structural and photovoltaic properties of bulk-heterojunction-based polymer solar cells (BHJ PSCs) fabricated using poly(3-hexylthiophene): indene-C60 bisadduct (P3HT:IC60BA) photoactive medium. A dramatic increase in the power conversion efficiency (~20%) was witnessed for the BHJ PSCs treated with DHP compared to the pristine devices. A plausible explanation describing the alignment of pyridine moieties of DHP with the indene side groups of IC60BA is presented with a view to improving the performance of the BHJ PSCs via improved crystalline order and hydrophobicity changes

    Manganese and Graphene Included Titanium Dioxide Composite Nanowires: Fabrication, Characterization and Enhanced Photocatalytic Activities

    No full text
    We report the detailed microstructural, morphological, optical and photocatalytic studies of graphene (G) and manganese (Mn) co-doped titanium dioxide nanowires (TiO2(G–Mn) NWs) prepared through facile combined electrospinning–hydrothermal processes. The as-prepared samples were thoroughly characterized using X-ray diffraction (XRD), transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and diffuse reflectance spectroscopy (DRS). XRD studies reveal the formation of mixed anatase-rutile phases or rutile phase depending on the dopant (Mn) precursor concentrations in the electrospinning dope and calcination temperature. The evaluation of lattice parameters revealed that the incorporation of Mn species and carbon atoms in to the lattice of anatase or rutile TiO2 could occur through substituting the sites of oxygen atoms. XPS results confirm the existence of Mn2+/Mn3+ within the TiO2 NW. Raman spectroscopy provides the evidence for structural modification because of the graphene inclusion in TiO2 NW. The optical band gap of G–Mn including TiO2 is much lower than pristine TiO2 as confirmed through UV-vis DRS. The photocatalytic activities were evaluated by nitric oxide (NOx) degradation tests under visible light irradiation. Superior catalytic activity was witnessed for rutile G–Mn-co-doped TiO2 NW over their anatase counterparts. The enhanced photocatalytic property was discussed based on the synergistic effects of doped G and Mn atoms and explained by plausible mechanisms

    Design of Graphene- and Polyaniline-Containing Functional Polymer Hydrogel as a New Adsorbent for Removal of Chromium (VI) Ions

    No full text
    Hydrogels find applications in various fields, and the ever-growing spectrum of available monomers, crosslinking, and nanotechnologies widen the application of polymer hydrogels. Herein, we describe the preparation of a new graphene (G)- and polyaniline (PANI)-containing functional polymer gel (G/PANI/FG) through a facile crosslinking copolymerization approach. Several characterization techniques such as field-emission scanning electron microscopy, Fourier-transform infrared, and X-ray photoelectron spectroscopy were employed to understand the physicochemical characteristics of the G/PANI/FG. The new G/PANI/FG was used as an adsorbent for chromium (VI) and exhibited the highest Cr (VI) removal efficiency (~97%). The inclusion of G and PANI in the gel results in high surface area, 3D porous structure, and Cr (VI)-chelating amine sites, which enhanced the Cr (VI) removal efficiency and thermal stability of the gel adsorbent. The results of our study revealed that G/PANI/FG is suited for the removal of Cr (VI) from aqueous solution
    corecore