22 research outputs found

    Salinity Measurements Collected by Fishermen Reveal a “River in the Sea” Flowing Along the Eastern Coast of India

    Get PDF
    Being the only tropical ocean bounded by a continent to the north, the Indian Ocean is home to the most powerful monsoon system on Earth. Monsoonal rains and winds induce huge river discharges and strong coastal currents in the northern Bay of Bengal. To date, the paucity of salinity data has prevented a thorough description of the spreading of this freshwater into the bay. The potential impact of the salinity on cyclones and regional climate in the Bay of Bengal is, however, a strong incentive for a better description of the water cycle in this region. Since May 2005, the National Institute of Oceanography conducts a program in which fishermen collect seawater samples in knee-deep water at eight stations along the Indian coastline every 5 days. Comparison with open-ocean samples shows that this cost-effective sampling strategy is representative of offshore salinity evolution. This new dataset reveals a salinity drop exceeding 10 g kg−1 in the northern part of the bay at the end of the summer monsoon. This freshening signal propagates southward in a narrow (~100 km wide) strip along the eastern coast of India, and reaches its southern tip after 2.5 months. Satellite-derived alongshore-current data shows that the southward propagation of this “river in the sea” is consistent with transport by seasonal coastal currents, while other processes are responsible for the ensuing erosion of this coastal freshening. This simple procedure of coastal seawater samples collection could further be used to monitor phytoplankton concentration, bacterial content, and isotopic composition of seawater along the Indian coastlin

    Do cold, low salinity waters pass through the Indo-Sri Lanka channel during winter?

    No full text
    During winter, along the east coast of India, the near-surface flow is characterized by the southward-flowing East India Coastal Current (EICC) which bends around Sri Lanka and enters into the south-eastern Arabian Sea (AS). This current carries cooler, low-salinity waters from the head Bay of Bengal (BoB) into the south-easternAS. But due to a lack of any direct in situ measurements, it is not clear whether any part of this current that flows through the Indo-Sri Lanka Channel (ISLC) is significant. An attempt is made in this study to look for any observational evidence for the southward flow of cooler, low salinity waters through the ISLC during winter. In the absence of direct in situ measurements on the observed currents in the non-navigable shallow ISLC, the observed high resolution, advanced very high resolution radiometer (AVHRR) sea surface temperature (SST), and sea-viewing wide field-of-view sensor (SeaWiFS) chlorophyll-a and historic sea surface salinity (SSS) data are utilized as tracers to track any southward water flow through the Pamban Pass and Adam's Bridge in the ISLC. The analysis suggests that both the non-navigable shallow Pamban Pass and the Adam's Bridge in the ISLC act as barriers and limit the southward flow of cooler, low salinity waters into the Gulf of Mannar in the south during winter

    A cold pool south of Indo-Sri Lanka channel and its intrusion into the Southeastern Arabian Sea during winter

    No full text
    During winter, south of the Indo-Sri Lanka Channel (ISLC), the observed sea-surface temperature (SST) distribution shows a distinct mini-cold pool (MCP) with relatively cooler waters (SST<28 °C). All the available satellite and in-situ measurements are utilized to characterize and explain the mechanisms that govern the evolution of the observed MCP. During December-January, the northeasterly surface winds blow through the ISLC manifesting a patch of strong winds in the south with peak intensity of about 10 m/s, enhance surface turbulent heat losses and drive near-surface vertical mixing resulting in the observed cooling. The vertical temperature profiles in this region also show cooling and deepening of the near-surface isothermal layer from November to January. This cooling occurs episodically on an intra-seasonal time scale with a typical periodicity of 8-15 days and is stronger when the surface winds intensify, surface net heat losses are larger and the near-surface circulation is more pronounced. The cooling episodes varied in number, intensity, duration and spatial extent in each winter during 1998-2006. The cooler surface waters from this MCP flow initially southwestward and are then topographically steered northwestward by the Maldives Island Chain. The resultant near-surface circulation also appears to strengthen the amplitude of the near-surface thermal inversions observed in the SouthEastern Arabian Sea (SEAS)

    Investigation of XBT and XCTD biases in the Arabian Sea and the Bay of Bengal with implications for climate studies

    No full text
    Long time series of XBT data in the Bay of Bengal and the Arabian Sea are valuable datasets for exploring and understanding climate variability. However, such studies of interannual and longer-scale variability of temperature require an understanding, and, if possible, a correction of errors introduced by biases in the XBT and expendable conductivity-temperature-depth (XCTD) data. Two cruises in each basin were undertaken in 2008/09 on which series of tests of XBTs and XCTDs dropped simultaneously with CTD casts were performed. The XBT and XCTD depths were corrected by comparison with CTD data using a modification of an existing algorithm. Significant probe-to-probe fall-rate equation (FRE) velocity and deceleration coefficient variability was found within a cruise, as well as cruise-to-cruise variability. A small (~0.01°C) temperature bias was also identified for XBTs on each cruise. No new FRE can be proposed for either the Bay of Bengal or the Arabian Sea for XBTs. For the more consistent XCTD, basin-specific FREs are possible for the Bay of Bengal, but not for the Arabian Sea. The XCTD FRE velocity coefficients are significantly higher than the XCTD manufacturers' FRE coefficient or those from previous tests, possibly resulting from the influence of temperature on XCTD FRE. Mean temperature anomalies versus a long-term mean climatology for XBT data using the present default FRE have a bias (which is positive for three cruises and negative for one cruise) compared to the mean temperature anomalies for CTD data. Some improvement is found when applying newly calculated cruise-specific FREs. This temperature error must be accounted for in any study of temperature change in the regions

    Reduced near-surface thermal inversions in 2005-06 in the southeastern Arabian Sea (Lakshadweep Sea)

    No full text
    Repeat XBT transects made at near-fortnightly intervals in the Lakshadweep Sea (southeastern Arabian Sea) and ocean data assimilation products are examined to describe the year-to-year variability in the observed near-surface thermal inversions during the winter seasons of 2002-06. Despite the existence of a large low-salinity water intrusion into the Lakshadweep Sea, there was an unusually lower number of near-surface thermal inversions during the winter 2005/06 compared to the other winters. The possible causative mechanisms are examined. During the summer monsoon of 2005 and the following winter season, unusually heavy rainfall occurred over the southwestern Bay of Bengal and the Lakshadweep Sea compared to other years in the study. Furthermore, during the winter of 2005, both the East India Coastal Current and the Winter Monsoon Current were stronger compared to the other years, transporting larger quantities of low salinity waters from the Bay of Bengal into the Lakshadweep Sea where a relatively cooler near-surface thermal regime persisted owing to prolonged upwelling until November 2005. In addition, the observed local surface wind field was relatively stronger, and the net surface heat gain to the ocean was weaker over the Lakshadweep Sea during the postmonsoon season of 2005. Thus, in winter 2005/06, the combination of prolonged upwelling and stronger surface wind field resulting in anomalous net surface heat loss caused weaker secondary warming of the near-surface waters in the Lakshadweep Sea. This led to a weaker horizontal sea surface temperature (SST) gradient between the Lakshadweep Sea and the intruding Bay of Bengal waters and, hence, a reduced number of thermal inversions compared to other winters despite the presence of stronger vertical haline stratification
    corecore