2 research outputs found

    The relevance of probiotics in Caesarean-born neonates

    No full text
    There is growing interest in the use of probiotics in neonates. In particular, Lactobacillus rhamnosus, L. acidophilus, Bifidobacterium breve and B. longum have been well studied. Caesarean-section (CS)-born infants often lack Lactobacillus spp. and Bifidobacterium spp., which showed increasing evidence in establishing the neonatal immune system. Furthermore, CS increases the difficulties for mothers in initiating and sustaining breastfeeding. Increasing evidence shows CS-born infants are more susceptible to allergy, infections and chronic inflammatory diseases later in life. The number of CS births has increased continuously, now accounting for 35% of all deliveries Australia wide. In this context, probiotics may have a role in establishing a healthy neonatal gut microbiome

    Influence of Pore Size and Surface Functionalization of Mesoporous Silica Nanoparticles on the Solubility and Antioxidant Activity of Confined Coenzyme Q10

    No full text
    Coenzyme Q10 is a potent antioxidant that plays an important role in the maintenance of various biochemical pathways of the body and has a wide range of therapeutic applications. However, it has low aqueous solubility and oral bioavailability. Mesoporous silica nanoparticles (MCM-41 and SBA-15 types) exhibiting varying pore sizes and modified with phosphonate and amino groups were used to study the influence of pore structure and surface chemistry on the solubility, in vitro release profile, and intracellular ROS inhibition activity of coenzyme Q10. The particles were thoroughly characterized to confirm the morphology, size, pore profile, functionalization, and drug loading. Surface modification with phosphonate functional groups was found to have the strongest impact on the solubility enhancement of coenzyme Q10 when compared to that of pristine and amino-modified particles. Phosphonate-modified MCM-41 nanoparticles (i.e., MCM-41-PO3) induced significantly higher coenzyme Q10 solubility than the other particles studied. Furthermore, MCM-41-PO3 led to a twofold decrease in ROS generation in human chondrocyte cells (C28/I2), compared to the free drug in a DMSO/DMEM mixture. The results confirmed the significant contribution of small pore size and negative surface charge of MSNs that enable coenzyme Q10 confinement to allow enhanced drug solubility and antioxidant activity.</p
    corecore