5,599 research outputs found

    Dark Model Adaptation: Semantic Image Segmentation from Daytime to Nighttime

    Full text link
    This work addresses the problem of semantic image segmentation of nighttime scenes. Although considerable progress has been made in semantic image segmentation, it is mainly related to daytime scenarios. This paper proposes a novel method to progressive adapt the semantic models trained on daytime scenes, along with large-scale annotations therein, to nighttime scenes via the bridge of twilight time -- the time between dawn and sunrise, or between sunset and dusk. The goal of the method is to alleviate the cost of human annotation for nighttime images by transferring knowledge from standard daytime conditions. In addition to the method, a new dataset of road scenes is compiled; it consists of 35,000 images ranging from daytime to twilight time and to nighttime. Also, a subset of the nighttime images are densely annotated for method evaluation. Our experiments show that our method is effective for model adaptation from daytime scenes to nighttime scenes, without using extra human annotation.Comment: Accepted to International Conference on Intelligent Transportation Systems (ITSC 2018

    The long run impact of child abuse on health care costs and wellbeing in Australia. CHERE Working Paper 2010/10

    Get PDF
    There are approximately 55,000 substantiated child abuse or neglect cases in Australia each year, according to Australian Institute of Health and Welfare data, 2005-06 to 2008-09 (AIHW2010). In 2008-09, one third of child maltreatment cases related to physical or sexual abuse. Our paper examines the relationship between physical and sexual abuse of children and adult physical and mental health conditions and associated health care costs in Australia. The analysis utilises confidentialised unit record file data from the National Survey of Mental Health and Wellbeing 2007, which includes 8841 persons aged from 16 to 85. The econometric results indicate that Australians with a history of being abused as a child suffer from significantly more physical and mental health conditions as adults and incur higher annual health care costs. In addition, we investigate the associations between child abuse, incarceration and self harm and the intergenerational impact of abuse, to extend the understanding of the long run costs of child abuse in Australia. We conclude that prevention child abuse is expected to generate long term socio-economic benefits.child abuse, mental health, costs, Australia

    Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation

    Full text link
    We address the problem of semantic nighttime image segmentation and improve the state-of-the-art, by adapting daytime models to nighttime without using nighttime annotations. Moreover, we design a new evaluation framework to address the substantial uncertainty of semantics in nighttime images. Our central contributions are: 1) a curriculum framework to gradually adapt semantic segmentation models from day to night through progressively darker times of day, exploiting cross-time-of-day correspondences between daytime images from a reference map and dark images to guide the label inference in the dark domains; 2) a novel uncertainty-aware annotation and evaluation framework and metric for semantic segmentation, including image regions beyond human recognition capability in the evaluation in a principled fashion; 3) the Dark Zurich dataset, comprising 2416 unlabeled nighttime and 2920 unlabeled twilight images with correspondences to their daytime counterparts plus a set of 201 nighttime images with fine pixel-level annotations created with our protocol, which serves as a first benchmark for our novel evaluation. Experiments show that our map-guided curriculum adaptation significantly outperforms state-of-the-art methods on nighttime sets both for standard metrics and our uncertainty-aware metric. Furthermore, our uncertainty-aware evaluation reveals that selective invalidation of predictions can improve results on data with ambiguous content such as our benchmark and profit safety-oriented applications involving invalid inputs.Comment: IEEE T-PAMI 202

    Semi-Supervised Learning by Augmented Distribution Alignment

    Full text link
    In this work, we propose a simple yet effective semi-supervised learning approach called Augmented Distribution Alignment. We reveal that an essential sampling bias exists in semi-supervised learning due to the limited number of labeled samples, which often leads to a considerable empirical distribution mismatch between labeled data and unlabeled data. To this end, we propose to align the empirical distributions of labeled and unlabeled data to alleviate the bias. On one hand, we adopt an adversarial training strategy to minimize the distribution distance between labeled and unlabeled data as inspired by domain adaptation works. On the other hand, to deal with the small sample size issue of labeled data, we also propose a simple interpolation strategy to generate pseudo training samples. Those two strategies can be easily implemented into existing deep neural networks. We demonstrate the effectiveness of our proposed approach on the benchmark SVHN and CIFAR10 datasets. Our code is available at \url{https://github.com/qinenergy/adanet}.Comment: To appear in ICCV 201
    • …
    corecore