5,599 research outputs found
Dark Model Adaptation: Semantic Image Segmentation from Daytime to Nighttime
This work addresses the problem of semantic image segmentation of nighttime
scenes. Although considerable progress has been made in semantic image
segmentation, it is mainly related to daytime scenarios. This paper proposes a
novel method to progressive adapt the semantic models trained on daytime
scenes, along with large-scale annotations therein, to nighttime scenes via the
bridge of twilight time -- the time between dawn and sunrise, or between sunset
and dusk. The goal of the method is to alleviate the cost of human annotation
for nighttime images by transferring knowledge from standard daytime
conditions. In addition to the method, a new dataset of road scenes is
compiled; it consists of 35,000 images ranging from daytime to twilight time
and to nighttime. Also, a subset of the nighttime images are densely annotated
for method evaluation. Our experiments show that our method is effective for
model adaptation from daytime scenes to nighttime scenes, without using extra
human annotation.Comment: Accepted to International Conference on Intelligent Transportation
Systems (ITSC 2018
The long run impact of child abuse on health care costs and wellbeing in Australia. CHERE Working Paper 2010/10
There are approximately 55,000 substantiated child abuse or neglect cases in Australia each year, according to Australian Institute of Health and Welfare data, 2005-06 to 2008-09 (AIHW2010). In 2008-09, one third of child maltreatment cases related to physical or sexual abuse. Our paper examines the relationship between physical and sexual abuse of children and adult physical and mental health conditions and associated health care costs in Australia. The analysis utilises confidentialised unit record file data from the National Survey of Mental Health and Wellbeing 2007, which includes 8841 persons aged from 16 to 85. The econometric results indicate that Australians with a history of being abused as a child suffer from significantly more physical and mental health conditions as adults and incur higher annual health care costs. In addition, we investigate the associations between child abuse, incarceration and self harm and the intergenerational impact of abuse, to extend the understanding of the long run costs of child abuse in Australia. We conclude that prevention child abuse is expected to generate long term socio-economic benefits.child abuse, mental health, costs, Australia
Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation
We address the problem of semantic nighttime image segmentation and improve
the state-of-the-art, by adapting daytime models to nighttime without using
nighttime annotations. Moreover, we design a new evaluation framework to
address the substantial uncertainty of semantics in nighttime images. Our
central contributions are: 1) a curriculum framework to gradually adapt
semantic segmentation models from day to night through progressively darker
times of day, exploiting cross-time-of-day correspondences between daytime
images from a reference map and dark images to guide the label inference in the
dark domains; 2) a novel uncertainty-aware annotation and evaluation framework
and metric for semantic segmentation, including image regions beyond human
recognition capability in the evaluation in a principled fashion; 3) the Dark
Zurich dataset, comprising 2416 unlabeled nighttime and 2920 unlabeled twilight
images with correspondences to their daytime counterparts plus a set of 201
nighttime images with fine pixel-level annotations created with our protocol,
which serves as a first benchmark for our novel evaluation. Experiments show
that our map-guided curriculum adaptation significantly outperforms
state-of-the-art methods on nighttime sets both for standard metrics and our
uncertainty-aware metric. Furthermore, our uncertainty-aware evaluation reveals
that selective invalidation of predictions can improve results on data with
ambiguous content such as our benchmark and profit safety-oriented applications
involving invalid inputs.Comment: IEEE T-PAMI 202
Semi-Supervised Learning by Augmented Distribution Alignment
In this work, we propose a simple yet effective semi-supervised learning
approach called Augmented Distribution Alignment. We reveal that an essential
sampling bias exists in semi-supervised learning due to the limited number of
labeled samples, which often leads to a considerable empirical distribution
mismatch between labeled data and unlabeled data. To this end, we propose to
align the empirical distributions of labeled and unlabeled data to alleviate
the bias. On one hand, we adopt an adversarial training strategy to minimize
the distribution distance between labeled and unlabeled data as inspired by
domain adaptation works. On the other hand, to deal with the small sample size
issue of labeled data, we also propose a simple interpolation strategy to
generate pseudo training samples. Those two strategies can be easily
implemented into existing deep neural networks. We demonstrate the
effectiveness of our proposed approach on the benchmark SVHN and CIFAR10
datasets. Our code is available at \url{https://github.com/qinenergy/adanet}.Comment: To appear in ICCV 201
- …