1,105 research outputs found

    Numerical Study of Heterogeneous Reactions in an SOFC Anode with Oxygen Addition

    Get PDF
    Previous experimental studies have shown that addition of small amounts of oxygen to a hydrocarbon fuel stream can control coking in the anode, while relatively large amounts of oxygen are present in the fuel stream in single-chamber solid oxide fuel cells (SOFCs). In order to rationally design an anode for such use, it is important to understand the coupled catalytic oxidation/reforming chemistry and diffusion within the anode under SOFC operating conditions. In this study, the heterogeneous catalytic reactions in the anode of an anode-supported SOFC running on methane fuel with added oxygen are numerically investigated using a model that accounts for catalytic chemistry, porous media transport, and electrochemistry at the anode/electrolyte interface. Using an experimentally validated heterogeneous reaction mechanism for methane partial oxidation and reforming on nickel, we identify three distinct reaction zones at different depths within the anode: a thin outer layer in which oxygen is nearly fully consumed in oxidizing methane and hydrogen, followed by a reforming region, and then a water–gas shift region deep within the anode. Both single-chamber and dual-chamber SOFC anodes are explored

    Diamond growth in premixed propylene-oxygen flames

    Get PDF
    Diamond film growth in low-pressure premixed propylene/oxygen flames is demonstrated. Well-faceted films are grown at a pressure of 180 Torr and a fuel/oxygen ratio of 0.47. Using propylene as the fuel may greatly improve the economics of flame synthesis of diamond, since propylene is an order of magnitude cheaper than acetylene

    A Two-Dimensional Model of a Single-Chamber SOFC with Hydrocarbon Fuels

    Get PDF
    The single chamber fuel cell (SCFC) is a novel simplification of the conventional solid oxide fuel cell (SOFC) into which a premixed fuel/air mixture is introduced. It relies on the selectivity of the anode and cathode catalysts to generate a chemical potential gradient across the cell. For SCFC running on hydrocarbon fuels, the anode catalyst promotes in-situ internal reforming of the hydrocarbon and electrochemical oxidation of the syngas, while the cathode catalyst reduces oxygen simultaneously. Laboratory tests of small designs of such fuel cells have demonstrated excellent electrical performance (1, 2)

    Characterization of highly-oriented ferroelectric Pb_xBa_(1-x)TiO_3

    Get PDF
    Pb_xBa_(1-x)TiO_3 (0.2 ≾ x ≾ 1) thin films were deposited on single-crystal MgO as well as amorphous Si_3N_4/Si substrates using biaxially textured MgO buffer templates, grown by ion beam-assisted deposition (IBAD). The ferroelectric films were stoichiometric and highly oriented, with only (001) and (100) orientations evident in x-ray diffraction (XRD) scans. Films on biaxially textured templates had smaller grains (60 nm average) than those deposited on single-crystal MgO (300 nm average). Electron backscatter diffraction (EBSD) has been used to study the microtexture on both types of substrates and the results were consistent with x-ray pole figures and transmission electron microscopy (TEM) micrographs that indicated the presence of 90° domain boundaries, twins, in films deposited on single-crystal MgO substrates. In contrast, films on biaxially textured substrates consisted of small single-domain grains that were either c or a oriented. The surface-sensitive EBSD technique was used to measure the tetragonal tilt angle as well as in-plane and out-of-plane texture. High-temperature x-ray diffraction (HTXRD) of films with 90° domain walls indicated large changes, as much as 60%, in the c and a domain fractions with temperature, while such changes were not observed for Pb_xBa_(1-x)TiO_3 (PBT) films on biaxially textured MgO/Si_3N_4/Si substrates, which lacked 90° domain boundaries

    Diamond films from combustion of methyl acetylene and propadiene

    Get PDF
    To date diamond films grown with the combustion technique have used either acetylene or, rarely, ethylene as the fuel. However, there are barriers to large scale commercialization of the combustion technique using either fuel. For example, acetylene is relatively expensive and difficult to handle, while the use of ethylene gives relatively low growth rates. In this letter we propose replacing acetylene with MAPPTM gas, a commercial mixture of methyl acetylene and propadiene in liquefied petroleum gas (primarily propylene). MAPP gas is considerably cheaper, safer, and easier to handle than acetylene. Furthermore, the experiments described here suggest that MAPP gas flames are only slightly less efficient than acetylene flames at converting fuel carbon atoms into diamond

    Effective transition rates for epitaxial growth using fast modulation

    Get PDF
    Thin-film deposition is an industrially important process that is highly dependent on the processing conditions. Most films are grown under constant conditions, but a few studies show that modified properties may be obtained with periodic inputs. However, assessing the effects of modulation experimentally becomes impractical with increasing material complexity. Here we consider periodic conditions in which the period is short relative to the time scales of growth. We analyze a stochastic model of thin-film growth, computing effective transition rates associated with rapid periodic process parameters. Combinations of effective rates may exist that are not attainable under steady conditions, potentially enabling new film properties. An algorithm is presented to construct the periodic input for a desired set of effective transition rates. These ideas are demonstrated in three simple examples using kinetic Monte Carlo simulations of epitaxial growth

    Graded ferroelectric capacitors with robust temperature characteristics

    Get PDF
    Ferroelectric thin films offer the possibility of engineering the dielectric response for tunable components in frequency-agile rf and microwave devices. However, this approach often leads to an undesired temperature sensitivity. Compositionally graded ferroelectric films have been explored as a means of redressing this sensitivity, but experimental observations vary depending on geometry and other details. In this paper, we present a continuum model to calculate the capacitive response of graded ferroelectric films with realistic electrode geometries by accurately accounting for the polarization distribution and long-range electrostatic interactions. We show that graded c-axis poled BaxSr_(1−xT)iO_3 BST parallel plate capacitors are ineffective while graded a-axis poled BST coplanar capacitors with interdigitated electrodes are extremely effective in obtaining high and temperature-stable dielectric properties

    The aging of tungsten filaments and its effect on wire surface kinetics in hot-wire chemical vapor deposition

    Get PDF
    Wire-desorbed radicals present during hot-wire chemical vapor deposition growth have been measured by quadrupole mass spectrometry. New wires produce Si as the predominant radical for temperatures above 1500 K, with a minor contribution from SiH3, consistent with previous measurements; the activation energy for the SiH3 signal suggests its formation is catalyzed. Aged wires also produce Si as the predominant radical (above 2100 K), but show profoundly different radical desorption kinetics. In particular, the Si signal exhibits a high temperature activation energy consistent with evaporation from liquid silicon. The relative abundance of the other SiHx species suggests that heterogeneous pyrolysis of SiH4 on the wire may be occurring to some extent. Chemical analysis of aged wires by Auger electron spectroscopy suggests that the aging process is related to the formation of a silicide at the surface, with silicon surface concentrations as high as 15 at. %. A limited amount (2 at. %) of silicon is observed in the interior as well, suggesting that diffusion into the wire occurs. Calculation of the relative rates for the various wire kinetic processes, coupled with experimental observations, reveals that silicon diffusion through the silicide is the slowest process, followed by Si evaporation, with SiH4 decomposition being the fastest
    • …
    corecore