4,836 research outputs found
Book Review: LGBT Families
LGBT Families, by Nancy J. Mezey. Los Angeles, CA: Sage, 2015. 213 pp., $31.98 (paperback)
On the Complexity of List Ranking in the Parallel External Memory Model
We study the problem of list ranking in the parallel external memory (PEM)
model. We observe an interesting dual nature for the hardness of the problem
due to limited information exchange among the processors about the structure of
the list, on the one hand, and its close relationship to the problem of
permuting data, which is known to be hard for the external memory models, on
the other hand.
By carefully defining the power of the computational model, we prove a
permuting lower bound in the PEM model. Furthermore, we present a stronger
\Omega(log^2 N) lower bound for a special variant of the problem and for a
specific range of the model parameters, which takes us a step closer toward
proving a non-trivial lower bound for the list ranking problem in the
bulk-synchronous parallel (BSP) and MapReduce models. Finally, we also present
an algorithm that is tight for a larger range of parameters of the model than
in prior work
OpenACC Based GPU Parallelization of Plane Sweep Algorithm for Geometric Intersection
Line segment intersection is one of the elementary operations in computational geometry. Complex problems in Geographic Information Systems (GIS) like finding map overlays or spatial joins using polygonal data require solving segment intersections. Plane sweep paradigm is used for finding geometric intersection in an efficient manner. However, it is difficult to parallelize due to its in-order processing of spatial events. We present a new fine-grained parallel algorithm for geometric intersection and its CPU and GPU implementation using OpenMP and OpenACC. To the best of our knowledge, this is the first work demonstrating an effective parallelization of plane sweep on GPUs.
We chose compiler directive based approach for implementation because of its simplicity to parallelize sequential code. Using Nvidia Tesla P100 GPU, our implementation achieves around 40X speedup for line segment intersection problem on 40K and 80K data sets compared to sequential CGAL library
Zig-zag Sort: A Simple Deterministic Data-Oblivious Sorting Algorithm Running in O(n log n) Time
We describe and analyze Zig-zag Sort--a deterministic data-oblivious sorting
algorithm running in O(n log n) time that is arguably simpler than previously
known algorithms with similar properties, which are based on the AKS sorting
network. Because it is data-oblivious and deterministic, Zig-zag Sort can be
implemented as a simple O(n log n)-size sorting network, thereby providing a
solution to an open problem posed by Incerpi and Sedgewick in 1985. In
addition, Zig-zag Sort is a variant of Shellsort, and is, in fact, the first
deterministic Shellsort variant running in O(n log n) time. The existence of
such an algorithm was posed as an open problem by Plaxton et al. in 1992 and
also by Sedgewick in 1996. More relevant for today, however, is the fact that
the existence of a simple data-oblivious deterministic sorting algorithm
running in O(n log n) time simplifies the inner-loop computation in several
proposed oblivious-RAM simulation methods (which utilize AKS sorting networks),
and this, in turn, implies simplified mechanisms for privacy-preserving data
outsourcing in several cloud computing applications. We provide both
constructive and non-constructive implementations of Zig-zag Sort, based on the
existence of a circuit known as an epsilon-halver, such that the constant
factors in our constructive implementations are orders of magnitude smaller
than those for constructive variants of the AKS sorting network, which are also
based on the use of epsilon-halvers.Comment: Appearing in ACM Symp. on Theory of Computing (STOC) 201
Geosciences for Elementary Educators: A Course Assessment
Geosciences for Elementary Educators engages future elementary teachers in a hands-on investigation of topics aligned with the third and fifth grade Earth/Space Science and Scientific Inquiry benchmarks of the Oregon Content Standards. The course was designed to develop the content background of elementary teachers within the framework of the science described in the content standards, to provide an opportunity for future teachers to explore the content area in relation to what takes place in the classrooms of elementary schools, and to initiate a community of learners focused on teaching science to elementary students. The course focused on four themes: the classroom teacher as an activity and curriculum developer using diverse resources to keep the content current and alive; the classroom teacher as educator dealing with the diverse backgrounds of students in a developmentally appropriate manner; the classroom teacher as reflective practitioner exploring the links among pedagogy, content, and student learning; and, the classroom teacher as citizen staying current with emerging policy issues and debates that impact education. In a course where process is extremely important, participants are assessed on what they can do with content and process knowledge through preparing lesson plans, presenting lessons in a simulated classroom environment, and developing a portfolio and journal. Lesson plans demonstrate participant understanding of inquiry, using models, deductive and inductive approaches, links between communication skills and content knowledge, and effective use of technology, including the Internet. For each topic, the mixture of demonstration, experimentation, inquiry, and lecture models are explored through investigation, discovery, and analysis
European markets for NFC: supply and demand issues
orange juice, NFC, Europe, supply, demand, Agribusiness,
Generic Continuity of Operations/Continuity of Government Plan for State-Level Transportation Agencies, Research Report 11-01
The Homeland Security Presidential Directive 20 (HSPD-20) requires all local, state, tribal and territorial government agencies, and private sector owners of critical infrastructure and key resources (CI/KR) to create a Continuity of Operations/Continuity of Government Plan (COOP/COG). There is planning and training guidance for generic transportation agency COOP/COG work, and the Transportation Research Board has offered guidance for transportation organizations. However, the special concerns of the state-level transportation agency’s (State DOT’s) plan development are not included, notably the responsibilities for the entire State Highway System and the responsibility to support specific essential functions related to the State DOT Director’s role in the Governor’s cabinet. There is also no guidance on where the COOP/COG planning and organizing fits into the National Incident Management System (NIMS) at the local or state-level department or agency. This report covers the research conducted to determine how to integrate COOP/COG into the overall NIMS approach to emergency management, including a connection between the emergency operations center (EOC) and the COOP/COG activity. The first section is a presentation of the research and its findings and analysis. The second section provides training for the EOC staff of a state-level transportation agency, using a hybrid model of FEMA’s ICS and ESF approaches, including a complete set of EOC position checklists, and other training support material. The third section provides training for the COOP/COG Branch staff of a state-level transportation agency, including a set of personnel position descriptions for the COOP/COG Branch members
Shuttle orbiter boundary layer transition at flight and wind tunnel conditions
Hypersonic boundary layer transition data obtained on the windward centerline of the Shuttle orbiter during entry for the first five flights are presented and analyzed. Because the orbiter surface is composed of a large number of thermal protection tiles, the transition data include the effects of distributed roughness arising from tile misalignment and gaps. These data are used as a benchmark for assessing and improving the accuracy of boundary layer transition predictions based on correlations of wind tunnel data taken on both aerodynamically rough and smooth orbiter surfaces. By comparing these two data bases, the relative importance of tunnel free stream noise and surface roughness on orbiter boundary layer transition correlation parameters can be assessed. This assessment indicates that accurate predications of transition times can be made for the orbiter at hypersonic flight conditions by using roughness dominated wind tunnel data. Specifically, times of transition onset and completion is accurately predicted using a correlation based on critical and effective values of a roughness Reynolds number previously derived from wind tunnel data
- …