21,234 research outputs found
Examining the mortality effects of the Irish National Smoking Ban.
Secondhand smoke causes disease and death in those exposed, with cardiovascular and respiratory problems as the most likely outcomes. The purpose of this study was to examine the mortality effects of the Irish national smoking ban of 2004
Overcomplete steerable pyramid filters and rotation invariance
A given (overcomplete) discrete oriented pyramid may be converted into a steerable pyramid by interpolation. We present a technique for deriving the optimal interpolation functions (otherwise called 'steering coefficients'). The proposed scheme is demonstrated on a computationally efficient oriented pyramid, which is a variation on the Burt and Adelson (1983) pyramid. We apply the generated steerable pyramid to orientation-invariant texture analysis in order to demonstrate its excellent rotational isotropy. High classification rates and precise rotation identification are demonstrated
Construction of localized wave functions for a disordered optical lattice and analysis of the resulting Hubbard model parameters
We propose a method to construct localized single particle wave functions
using imaginary time projection and thereby determine lattice Hamiltonian
parameters. We apply the method to a specific disordered potential generated by
an optical lattice experiment and calculate for each instance of disorder, the
equivalent lattice model parameters. The probability distributions of the
Hubbard parameters are then determined. Tests of localization and eigen-energy
convergence are examined.Comment: 10 pages, 16 figure
Formation of Giant Planets by Concurrent Accretion of Solids and Gas inside an Anti-Cyclonic Vortex
We study the formation of a giant gas planet by the core--accretion
gas--capture process, with numerical simulations, under the assumption that the
planetary core forms in the center of an anti-cyclonic vortex. The presence of
the vortex concentrates particles of centimeter to meter size from the
surrounding disk, and speeds up the core formation process. Assuming that a
planet of Jupiter mass is forming at 5 AU from the star, the vortex enhancement
results in considerably shorter formation times than are found in standard
core--accretion gas--capture simulations. Also, formation of a gas giant is
possible in a disk with mass comparable to that of the minimum mass solar
nebula.Comment: 27 pages, 4 figures, ApJ in pres
Quantum key distribution with higher-order alphabets using spatially-encoded qudits
We propose and demonstrate a quantum key distribution scheme in higher-order
-dimensional alphabets using spatial degrees of freedom of photons. Our
implementation allows for the transmission of 4.56 bits per sifted photon,
while providing improved security: an intercept-resend attack on all photons
would induce an error rate of 0.47. Using our system, it should be possible to
send more than a byte of information per sifted photon.Comment: 4 pages, 5 figures. Replaced with published versio
On the Relationship between Resolution Enhancement and Multiphoton Absorption Rate in Quantum Lithography
The proposal of quantum lithography [Boto et al., Phys. Rev. Lett. 85, 2733
(2000)] is studied via a rigorous formalism. It is shown that, contrary to Boto
et al.'s heuristic claim, the multiphoton absorption rate of a ``NOON'' quantum
state is actually lower than that of a classical state with otherwise identical
parameters. The proof-of-concept experiment of quantum lithography [D'Angelo et
al., Phys. Rev. Lett. 87, 013602 (2001)] is also analyzed in terms of the
proposed formalism, and the experiment is shown to have a reduced multiphoton
absorption rate in order to emulate quantum lithography accurately. Finally,
quantum lithography by the use of a jointly Gaussian quantum state of light is
investigated, in order to illustrate the trade-off between resolution
enhancement and multiphoton absorption rate.Comment: 14 pages, 7 figures, submitted, v2: rewritten in response to
referees' comments, v3: rewritten and extended, v4: accepted by Physical
Review
Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration
We present simulations of the non-linear evolution of streaming instabilities
in protoplanetary disks. The two components of the disk, gas treated with grid
hydrodynamics and solids treated as superparticles, are mutually coupled by
drag forces. We find that the initially laminar equilibrium flow spontaneously
develops into turbulence in our unstratified local model. Marginally coupled
solids (that couple to the gas on a Keplerian time-scale) trigger an upward
cascade to large particle clumps with peak overdensities above 100. The clumps
evolve dynamically by losing material downstream to the radial drift flow while
receiving recycled material from upstream. Smaller, more tightly coupled solids
produce weaker turbulence with more transient overdensities on smaller length
scales. The net inward radial drift is decreased for marginally coupled
particles, whereas the tightly coupled particles migrate faster in the
saturated turbulent state. The turbulent diffusion of solid particles, measured
by their random walk, depends strongly on their stopping time and on the
solids-to-gas ratio of the background state, but diffusion is generally modest,
particularly for tightly coupled solids. Angular momentum transport is too weak
and of the wrong sign to influence stellar accretion. Self-gravity and
collisions will be needed to determine the relevance of particle overdensities
for planetesimal formation.Comment: Accepted for publication in ApJ (17 pages). Movies of the simulations
can be downloaded at http://www.mpia.de/~johansen/research_en.ph
The assessment of the implementation of fuel related legislations and their impact on air quality and public health
The main focus of Work Package 6 of the Aphekom project was: to develop innovative methods to analyse the decrease in air pollution levels following implementation of an European regulation to reduce the sulphur content in liquid fuels; to follow the evolution of health risks over time; to track related effect modifiers; and to quantify the monetary costs of health impacts of the implemented regulation
Profiling SO2 air pollution patterns in 9 EU Aphekom cities: The Aphekom Project
A detailed analysis of hourly pollutant concentrations mainly focusing on SO2 data obtained from 9 centres involved in the Aphekom project was conducted. This involved the generation of individual diurnal SO2 profiles in order to:
(i) identify city specific patterns including source apportionment and quantification,
(ii) track changes over time,
(iii) analyse the changes in SO2 concentrations from different emission sources, i.e. traffic, heating, shipping and industrial sources, overtime
Mortality impacts of sulphur concetrations in 20 European cities in the APHEKOM Project
The implementation of three EU directives to reduce sulphur content in fuel was assessed for mortality impacts
in 20 European cities, between 1990 and 2007 in the APHEKOM project. This specific study aimed to examine whether different lag structures apply to the relationships between cardiovascular and respiratory events and SO2 concentrations, which will therefore result in differences in mortality impacts from regulation implementation. Prior evidence has shown that cardiovascular mortality is more likely to be affected by SO2 concentrations on the same or the previous day of the event, while respiratory mortality more likely to show a delayed effect of exposure to the same pollutant
- …