1,125 research outputs found

    On the contrasting spin dynamics of La2xSrxCuO4La_{2-x}Sr_xCuO_4, Nd2xCexCuO4Nd_{2-x}Ce_xCuO_4 and YBa2Cu3O6+xYBa_2Cu_3O_{6+x} near half filling

    Full text link
    We present simple calculations which show that incommensurability upon doping and the width of the magnetically ordered phase in Mott-Hubbard insulators depend strongly on the location of the hole/electron pockets in the Brillouin zone. For LaSrCuOLaSrCuO systems, we found the pockets at (±π/2,±π/2)(\pm \pi/2,\pm \pi/2), in which case the corrections to the antiferromagnetic spin stiffness grow with doping and destroy the commensurate antiferromagnetic ordering already at a very small doping. On the other hand, in NdCeCuONdCeCuO, the hole pockets are located at (π,0)(\pi,0) and the symmetry related points, in which case the corrections to the stiffness scale linearly with the density of carriers and do not destroy commensurate spin ordering. For YBCuOYBCuO, systems the situation is less certain, but our results favor hole pockets at (π/2,π/2)(\pi/2,\pi/2). We also discuss briefly the tendency towards phase separation.Comment: 18 pages, LaTe

    Agronomic characteristics of the spring forms of the wheat landraces (einkorn, emmer, spelt, intermediate bread wheat) grown in organic farming

    Get PDF
    Organic farmers look to the possibilities of growing neglected crops, such as the spring forms of hulled wheat – einkorn, emmer and spelt – for support in developing the organic farming system. In 2008, 169 landraces from the gene bank at the Crop Research Institute in Prague were tested on certifi ed organic plots. The experiment was aimed at fi nding suitable varieties for the organic farming system. In summary, our fi ndings show that einkorn (Triticum monococcum L.) and emmer wheat [Triticum dicoccum Schrank (Schuebl)] are resistant to powdery mildew and brown rust, spelt wheat (Triticum spelta L.) is less resistant to these two diseases, and the intermediate forms of bread wheat are very sensitive to such infestation. The varieties evaluated incline to lodging, as they have long and weak stems. Einkorn and emmer wheat have short and dense spikes and a low thousand grains weight, whereas spelt wheat has long and lax spikes. The level of the harvest index is low. Potentially useful varieties were found during the fi eld experiment and evaluation, and our future efforts will therefore focus on improving resistance to lodging and increasing the productivity of the spike

    Sr impurity effects on the magnetic correlations of LaSrCuO

    Full text link
    We examine the low-temperature magnetic properties of moderately doped LaSrCuO paying particular attention to the spin-glass (SG) phase and the C-IC transition as they are affected by Sr impurity disorder. New measurements of the low-temperature susceptibility in the SG phase show an increase of an anomalously small Curie constant with doping. This behaviour is explained in terms of our theoretical work that finds small clusters of AFM correlated regions separated by disordered domain walls. The domain walls lead to a percolating sequence of paths connecting the impurities. We predict that for this spin morphology the Curie constant should scale as 1/(2ξ(x,T=0)2)1/(2 \xi(x,T=0)^2), a result that is quantitatively in agreement with experiment. Also, we find that the magnetic correlations in the ground states in the SG phase are commensurate, and that this behaviour should persist at higher temperatures where the holes should move along the domain walls. However, our results show that incommensurate correlations develop continuously around 5 % doping, consistent with recent measurements by Yamada.Comment: 30 pages, revtex, 8 .ps format figures (2 meant to be in colour), to be published in Physical Review B

    Charge pairing, superconducting transition and supersymmetry in high-temperature cuprate superconductors

    Full text link
    We propose a model for high-Tc_{c} superconductors, valid for 0δδSC0\leq\delta\leq\delta_{SC}, that includes both the spin fluctuations of the Cu++^{++} magnetic ions and of the O^{--} doped holes. Spin-charge separation is taken into account with the charge of the doped holes being associated to quantum skyrmion excitations (holons) of the Cu++^{++} spin background. The holon effective interaction potential is evaluated as a function of doping, indicating that Cooper pair formation is determined by the competition between the spin fluctuations of the Cu++^{++} background and of spins of the O^{--} doped holes (spinons). The superconducting transition occurs when the spinon fluctuations dominate, thereby reversing the sign of the interaction. At this point (δ=δSC\delta = \delta_{SC}), the theory is supersymmetric at short distances and, as a consequence, the leading order results are not modified by radiative corrections. The critical doping parameter for the onset of superconductivity at T=0 is obtained and found to be a universal constant determined by the shape of the Fermi surface. Our theoretical values for δSC\delta_{SC} are in good agreement with the experiment for both LSCO and YBCO.Comment: RevTex, 4 pages, no figure

    Influence of next-nearest-neighbor electron hopping on the static and dynamical properties of the 2D Hubbard model

    Full text link
    Comparing experimental data for high temperature cuprate superconductors with numerical results for electronic models, it is becoming apparent that a hopping along the plaquette diagonals has to be included to obtain a quantitative agreement. According to recent estimations the value of the diagonal hopping tt' appears to be material dependent. However, the values for tt' discussed in the literature were obtained comparing theoretical results in the weak coupling limit with experimental photoemission data and band structure calculations. The goal of this paper is to study how tt' gets renormalized as the interaction between electrons, UU, increases. For this purpose, the effect of adding a bare diagonal hopping tt' to the fully interacting two dimensional Hubbard model Hamiltonian is investigated using numerical techniques. Positive and negative values of tt' are analyzed. Spin-spin correlations, n(k)n(\bf{k}), n\langle n\rangle vs μ\mu, and local magnetic moments are studied for values of U/tU/t ranging from 0 to 6, and as a function of the electronic density. The influence of the diagonal hopping in the spectral function A(k,ω)A(\bf{k},\omega) is also discussed, and the changes in the gap present in the density of states at half-filling are studied. We introduce a new criterion to determine probable locations of Fermi surfaces at zero temperature from n(k)n(\bf{k}) data obtained at finite temperature. It appears that hole pockets at k=(π/2,π/2){\bf{k}}=(\pi/2,\pi/2) may be induced for negative tt' while a positive tt' produces similar features at k=(π,0){\bf{k}}=(\pi,0) and (0,π)(0,\pi). Comparisons with the standard 2D Hubbard (t=0t'=0) model indicate that a negative tt' hopping amplitude appears to be dynamically generated. In general, we conclude that it is very dangerous to extract a bare parameter of the Hamiltonian (t)(t') from PES data whereComment: 9 pages (RevTex 3.0), 12 figures (postscript), files packed with uufile

    d-Wave Superconductivity Induced by Chern-Simons Term in High-TcT_c Cuprates

    Full text link
    We show that a Chern-Simons term for a gauge field describing a fluctuation of spins is induced by integrating out hole fields in the presence of spin-orbit coupling which originates from a buckling of the CuO2_2 plane. Through the Chern-Simons term, holes behave like skyrmion excitations in a spin system and become a superconducting state with dx2y2d_{x^2-y^2} symmetry after the antiferromagnetic long-range order is destroyed.Comment: 4 pages, 1 figure, the condition of taking continuum limit included, references added, typos corrected, to be published in Journal of Physical Society of Japa

    Validity of the rigid band picture for the t-J model

    Full text link
    We present an exact diagonalization study of the doping dependence of the single particle Green's function in 16, 18 and 20 site clusters of t-J model. We find evidence for rigid-band behaviour starting from the half-filled case: upon doping, the topmost states of the quasiparticle band observed in the photoemisson spectrum at half-filling cross the chemical potential and reappear as the lowermost states of the inverse photoemission spectrum. Features in the inverse photoemission spectra which are inconsistent with rigid-band behaviour are shown to originate from the nontrivial point group symmetry of the ground state with two holes, which enforces different selection rules than at half-filling. Deviations from rigid band behaviour which lead to the formation of the `large Fermi surface' in the momentum distribution occur only at energies far from the chemical potential. A Luttinger Fermi surface and a nearest neighbor hopping band do not exist.Comment: Remarks: Revtex file + 7 figures attached as compressed postscript files Figures can also be obtained by ordinary mail on reques

    Quantum skyrmions and the destruction of long-range antiferromagnetic order in the high-Tc superconductors La(2-x)Sr(x)CuO(4) and YBa(2)Cu(3)O(6+x)

    Full text link
    We study the destruction of the antiferromagnetic order in the high-Tc superconductors La(2-x)Sr(x)CuO(4) and YBa(2)Cu(3)O(6+x) in the framework of the CP1-nonlinear sigma model formulation of the 2D quantum Heisenberg antiferromagnet. The dopants are introduced as independent fermions with appropriate dispersion relations determined by the shape of the Fermi surface. The energy of skyrmion topological defects, which are shown to be introduced by doping, is used as an order parameter for antiferromagnetic order. We obtain analytic expressions for this as a function of doping which allow us to plot the curves T_N(x_c)\times x_c and M(x)\times x, for both YBCO and LSCO, in good quantitative agreement with the experimental data.Comment: 4 pages, revtex, 5 embeeded figure

    Doping dependence of the Neel temperature in Mott-Hubbard antiferromagnets: Effect of vortices

    Full text link
    The rapid destruction of long-range antiferromagnetic order upon doping of Mott-Hubbard antiferromagnetic insulators is studied within a generalized Berezinskii-Kosterlitz-Thouless renormalization group theory in accordance with recent calculations suggesting that holes dress with vortices. We calculate the doping-dependent Neel temperature in good agreement with experiments for high-Tc cuprates. Interestingly, the critical doping where long-range order vanishes at zero temperature is predicted to be xc ~ 0.02, independently of any energy scales of the system.Comment: 4 pages with 3 figures included, minor revisions, to be published in PR

    Comparison of the Sachs-Wolfe Effect for Gaussian and Non-Gaussian Fluctuations

    Full text link
    A consequence of non-Gaussian perturbations on the Sachs-Wolfe effect is studied. For a particular power spectrum, predicted Sachs-Wolfe effects are calculated for two cases: Gaussian (random phase) configuration, and a specific kind of non-Gaussian configuration. We obtain a result that the Sachs-Wolfe effect for the latter case is smaller when each temperature fluctuation is properly normalized with respect to the corresponding mass fluctuation δMM(R){\delta M\over M}(R). The physical explanation and the generality of the result are discussed.Comment: 16 page
    corecore