383 research outputs found

    FRET theoretical predictions concerning freely diffusive dyes inside spherical container: how to choose the best pair?

    Full text link
    FRET has been massively used to see if biomolecules were bounded or not by labelling both biomolecules by one dye of a FRET pair. This should give a digital answer to the question (fluorescence of the acceptor: high FRET efficency: molecules associated, fluorescence of the donor: low FRET efficency: molecules dissociated). This has been used, inter alia, at the single-molecule scale in containers, such as liposomes. One perspective of the field is to reduce the container’s size to study the effect of confinement on binding. The problem is that if the two dyes are encapsulated inside a small liposome, they could have a significant probability to be close one from the other one (and thus to undergo a high FRET efficiency event without binding). This is why we suggest here a theoretical model which gives mean FRET efficiency as a function of liposome radius (the model applies to any spherical container) and Förster radius to help the experimentalist to choose their experimental set-up. Besides, the influence of side effect on mean FRET efficiency has been studied as well. We show here that if this “background FRET” is most of the time non-quantitative, it can remain significant and which makes data analysis trickier. We could show as well that if this background FRET obviously increases when liposome radius decreases, this variation was lower than the one which could be expected because of side effect. We show as well the FRET efficiency function distribution which let the experimentalist know the probability to get one FRET efficiency value

    Spiers Memorial Lecture. Next generation nanoelectrochemistry: the fundamental advances needed for applications

    Full text link
    Nanoelectrochemistry, where electrochemical processes are controlled and investigated with nanoscale resolution, is gaining more and more attention because of the many potential applications in energy and sensing and the fact that there is much to learn about fundamental electrochemical processes when we explore them at the nanoscale. The development of instrumental methods that can explore the heterogeneity of electrochemistry occurring across an electrode surface, monitoring single molecules or many single nanoparticles on a surface simultaneously, have been pivotal in giving us new insights into nanoscale electrochemistry. Equally important has been the ability to synthesise or fabricate nanoscale entities with a high degree of control that allows us to develop nanoscale devices. Central to the latter has been the incredible advances in nanomaterial synthesis where electrode materials with atomic control over electrochemically active sites can be achieved. After introducing nanoelectrochemistry, this paper focuses on recent developments in two major application areas of nanoelectrochemistry; electrocatalysis and using single entities in sensing. Discussion of the developments in these two application fields highlights some of the advances in the fundamental understanding of nanoelectrochemical systems really driving these applications forward. Looking into our nanocrystal ball, this paper then highlights: the need to understand the impact of nanoconfinement on electrochemical processes, the need to measure many single entities, the need to develop more sophisticated ways of treating the potentially large data sets from measuring such many single entities, the need for more new methods for characterising nanoelectrochemical systems as they operate and the need for material synthesis to become more reproducible as well as possess more nanoscale control

    A modular design strategy to integrate mechanotransduction concepts in scaffold-based bone tissue engineering

    Full text link
    Repair or regeneration of load-bearing bones has long been an incentive for the tissue engineering community to develop a plethora of synthetic bone scaffolds. Despite the key role of physical forces and the mechanical environment in bone regeneration, the mechanotransduction concept has rarely been incorporated in structural design of bone tissue scaffolds, particularly those made of bioactive materials such as hydrogels and bioceramics. Herein, we introduce a modular design strategy to fabricate a load bearing device that can support a wide range of hydrogel- and ceramic-based scaffolds against complex in-vivo loading conditions to induce desirable mechanical strains for bone regeneration within the scaffolds. The device is comprised of a fenestrated polymeric shell and ceramic structural pillars arranged in a sophisticated configuration to provide ample internal space for the scaffold, also enabling it to purposely regulate the levels of strains and stresses within the scaffolds. Utilizing this top-down design approach, we demonstrate that the failure load of alginate hydrogels increases 3200-fold in compression, 300-fold in shear and 75-fold in impact, achieving the values that enable them to withstand physiological loads in weight-bearing sites, while allowing generation of osteoinductive strains (i.e., 0.2-0.4%) in the hydrogel. This modular design approach opens a broad range of opportunities to utilize various bioactive but mechanically weak scaffolds for the treatment of load-bearing defects and exploiting mechanobiology strategies to improve bone regeneration

    Electrocatalysis in confined space

    Full text link
    The complex interplay of restricted mass transport leading to local accumulation or depletion of educts, intermediates, products, counterions and co-ions influences the reactions at the active sites of electrocatalysts when electrodes are rough, three-dimensionally mesoporous or nanoporous. This influence is important with regard to activity, and even more to selectivity, of electrocatalytic reactions. The underlying principles are discussed based on the growing awareness of these considerations over recent years

    Recent Advances and a Roadmap to Wearable UV Sensor Technologies

    Full text link
    The tremendous impact of UV radiation on every individual has resulted in massive interest in development of new sensor technologies to effectively monitor the solar exposure. However, there is no comprehensive review that critically discusses the advances made in the field of wearable UV sensor technologies and to position them as next-generation mass-deployable wearable devices. Herein, this gap is addressed by first classifying UV detection technologies into photoelectric and photochromic systems and summarizing their unique strengths and drawbacks. This is followed by a discussion on the integration of novel materials and design concepts with these technologies to develop wearable UV sensors. Then, the commercially available wearable UV sensors are examined thoroughly together with their limitations. Toward the end, a highly critical future outlook is provided, wherein the role of technological and regulatory interventions in assisting the development and integration of wearable UV sensors in the day-to-day activities is discussed. More importantly, the purpose of this review is not only to provide an in-depth understanding of the underlying UV detection mechanism, design principles, and wearable technologies but also to act as a roadmap for those interested in the development and regulation of commercially deployable wearable UV sensors

    The Influence of Nanoconfinement on Electrocatalysis

    Full text link
    The use of nanoparticles and nanostructured electrodes are abundant in electrocatalysis. These nanometric systems contain elements of nanoconfinement in different degrees, depending on the geometry, which can have a much greater effect on the activity and selectivity than often considered. In this Review, we firstly identify the systems containing different degrees of nanoconfinement and how they can affect the activity and selectivity of electrocatalytic reactions. Then we follow with a fundamental understanding of how electrochemistry and electrocatalysis are affected by nanoconfinement, which is beginning to be uncovered, thanks to the development of new, atomically precise manufacturing and fabrication techniques as well as advances in theoretical modeling. The aim of this Review is to help us look beyond using nanostructuring as just a way to increase surface area, but also as a way to break the scaling relations imposed on electrocatalysis by thermodynamics

    How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells?

    Full text link
    Targeted drug delivery in cancer typically focuses on maximising the endocytosis of drugs into the diseased cells. However, there has been less focus on exploiting the differences in the endocytosis pathways of cancer cells versus non-cancer cells. An understanding of the endocytosis pathways in both cancer and non-cancer cells allows for the design of nanoparticles to deliver drugs to cancer cells whilst restricting healthy cells from taking up anticancer drugs, thus efficiently killing the cancer cells. Herein we compare the differences in the endocytosis pathways of cancer and healthy cells. Second, we highlight the importance of the physicochemical properties of nanoparticles (size, shape, stiffness, and surface chemistry) on cellular uptake and how they can be adjusted to selectively target the dominated endocytosis pathway of cancer cells over healthy cells and to deliver anticancer drug to the target cells. The review generates new thought in the design of cancer-selective nanoparticles based on the endocytosis pathways

    Elliptical supra-cellular topographies regulate stem cells migratory pattern and osteogenic differentiation

    Full text link
    In living systems, the extracellular environment is structured in a hierarchal order assembling into tissues in a myriad of shapes and complex geometries. Residing within the extracellular matrix, cells are presented and influenced by geometrical cues at several scales. While there is an emerging body of evidence that substrate with symmetric supra-cellular scale geometries (e.g. cylinders and spheres) influence the cell behavior, the effect of physiologically relevant, non-symmetric geometries with varying mean curvatures remain unexplored. In this study, we systematically explore the migratory and differentiation behavior of adipose derived stem cells (ADSCs) on arrays of elliptical cylinders (up to 80 × cell size) with varying mean curvature made from hydroxyapatite. Here, we report a new substrate-driven cell response, which we term “ridge-effect” that leads to osteogenic differentiation and nuclear deformation of cells adhered on regions of highest mean curvature at the ridge of the elliptical cylinders. This phenomenon is observed in both expansion and osteogenic medium. Live imaging combined with functional analysis shows that cells travel along-side the zero mean curvature direction on elliptical cylinders and significantly promote expression of collagen I and osteocalcin compared to a flat surface, in the absence of osteogenic supplements. Altogether, this work identifies supra-cellular scale topographies, and suggest the “ridge-effect” as a physical cue for guiding cellular mechanoresponse and promoting osteogenic differentiation. This knowledge could be utilized as an important biomaterial design parameter for the development of biomedical interfaces and bone scaffolds in tissue engineering and regenerative medicine

    Key Parameters That Determine the Magnitude of the Decrease in Current in Nanopore Blockade Sensors

    Full text link
    Nanopore blockade sensors were developed to address the challenges of sensitivity and selectivity for conventional nanopore sensors. To date, the parameters affecting the current of the sensor have not been elucidated. Herein, the impacts of nanopore size and charge and the shape, size, surface charge, and aggregation state of magnetic nanoparticles were assessed. The sensor was tolerant to all parameters contrary to predictions from electronic or geometric arguments on the current change. Theoretical models showed the greater importance of the polymers around nanoparticles and the access resistance of nanopores to the current, when compared with translocation-based nanopore sensors. The signal magnitude was dominated by the change in access resistance of ∌4.25 Mω for all parameters, resulting in a robust system. The findings provide understandings of changes in current when nanopores are blocked, like in RNA trapping or nanopore blockade sensors, and are important for designing sensors based on nanopore blockades

    Feasibility of Silicon Quantum Dots as a Biomarker for the Bioimaging of Tear Film

    Full text link
    This study investigated the fluorescence and biocompatibility of hydrophilic silicon quantum dots (SiQDs) that are doped with scandium (Sc-SiQDs), copper (Cu-SiQDs), and zinc (Zn-SiQDs), indicating their feasibility for the bioimaging of tear film. SiQDs were investigated for fluorescence emission by the in vitro imaging of artificial tears (TheraTears¼), using an optical imaging system. A trypan blue exclusion test and MTT assay were used to evaluate the cytotoxicity of SiQDs to cultured human corneal epithelial cells. No difference was observed between the fluorescence emission of Sc-SiQDs and Cu-SiQDs at any concentration. On average, SiQDs showed stable fluorescence, while Sc-SiQDs and Cu-SiQDs showed brighter fluorescence emissions than Zn-SiQDs. Cu-SiQDs and Sc-SiQDs showed a broader safe concentration range than Zn-SiQDs. Cu-SiQDs and Zn-SiQDs tend to aggregate more substantially in TheraTears¼ than Sc-SiQDs. This study elucidates the feasibility of hydrophilic Sc-SiQDs in studying the tear film’s aqueous layer
    • 

    corecore