49 research outputs found

    Temperature and field dependence of the phase separation, structure, and magnetic ordering in La1−x_{1-x}Cax_xMnO3_3, (x=0.47x=0.47, 0.50, and 0.53)

    Full text link
    Neutron powder diffraction measurements, combined with magnetization and resistivity data, have been carried out in the doped perovskite La1−x_{1-x}Cax_xMnO3_3 (x=0.47x=0.47, 0.50, and 0.53) to elucidate the structural, magnetic, and electronic properties of the system around the composition corresponding to an equal number of Mn3+ and Mn4+. At room temperature all three samples are paramagnetic and single phase, with crystallographic symmetry Pnma. The samples then all become ferromagnetic (FM) at TC≈265T_C\approx 265 K. At ∼230\sim 230 K, however, a second distinct crystallographic phase (denoted A-II) begins to form. Initially the intrinsic widths of the peaks are quite large, but they narrow as the temperature decreases and the phase fraction increases, indicating microscopic coexistence. The fraction of the sample that exhibits the A-II phase increases with decreasing temperature and also increases with increasing Ca doping, but the transition never goes to completion to the lowest temperatures measured (5 K) and the two phases therefore coexist in this temperature-composition regime. Phase A-II orders antiferromagnetically (AFM) below a N\'{e}el temperature TN≈160T_N \approx 160 K, with the CE-type magnetic structure. Resistivity measurements show that this phase is a conductor, while the CE phase is insulating. Application of magnetic fields up to 9 T progressively inhibits the formation of the A-II phase, but this suppression is path dependent, being much stronger for example if the sample is field-cooled compared to zero-field cooling and then applying the field. The H-T phase diagram obtained from the diffraction measurements is in good agreement with the results of magnetization and resistivity.Comment: 12 pages, 3 tables, 11 figure

    Independent freezing of charge and spin dynamics in La1.5Sr0.5CoO4

    Full text link
    We present elastic and quasielastic neutron scattering measurements characterizing peculiar short-range charge-orbital and spin order in the layered perovskite material La1.5Sr0.5CoO4. We find that below Tc~750 K holes introduced by Sr doping lose mobility and enter a statically ordered {\it charge glass} phase with loosely correlated checkerboard arrangement of empty and occupied d{3z2-r2} orbitals (Co3+ and Co2+). The dynamics of the resultant mixed spin system is governed by the anisotropic nature of the crystal-field Hamiltonian and the peculiar exchange pattern produced by the orbital order. It undergoes a {\it spin freezing} transition at much a lower temperature, Ts~30 K.Comment: 4 pages, 3 figures, Latex. Submitted to PR

    Magnetic properties of the S=1/2 quasi-one-dimensional antiferromagnet CaCu2O3

    Full text link
    We report single crystal growth and magnetic susceptibility and neutron diffraction studies of the S=1/2 quasi-1D antiferromagnet CaCu2O3. The structure of this material is similar to that of the prototype two-leg spin-ladder compound SrCu2O3. However, the Cu-O-Cu bond angle in the ladder rungs in CaCu2O3 is equal to 123 deg, and therefore the magnetic interaction along the rungs is expected to be much weaker in this material. At high temperatures, the magnetic susceptibility of CaCu2O3 can be decomposed into a contribution from 1D antiferromagnetic chains of finite-size chain segments together with a weak Curie contribution. The intrachain magnetic exchange constant, determined from the magnetic susceptibility measurements, is 2000 K. CaCu2O3 undergoes a Neel transition at T_N=25 K with ordering wavevector of (0.429(5), 0.5, 0.5). The magnetic structure is incommensurate in the direction of the frustrated interchain interaction. Weak commensurate (0.5, 0.5, 0.5) magnetic peaks are also observed below T_N. Application of a magnetic field induces a metamagnetic transition at which the incommensurability of the magnetic structure is substantially reduced. The material possesses only short-range magnetic order above the transition field.Comment: 12 pages, 10 embedded figure

    Jewish symbols in the Greco - Roman period : V.4.: The Problem of method ; Symbols from Jewish cult

    No full text
    New Yorkxiii, 117 pic, 235 p.; 31 c

    Jewish symbols in the Greco - Roman period : V.5.: Fish, bread and wine

    No full text
    New Yorkxxii, 186 pic, 205 p.; 31 c

    Jewish symbols in the Greco - Roman period : V.6.: Fish, bread and wine

    No full text
    New Yorkxii, 83 pic, 261 p.; 31 c

    Jewish symbols in the Greco - Roman period : V.10.: Symbolism in The Dura Synagogue

    No full text
    New Yorkxi, 251 p.; 31 c

    Jewish symbols in the Greco - Roman period : V.12.: Summary and conclusions

    No full text
    New Yorkxii, 217 p.; 31 c

    Jewish symbols in the Greco - Roman period : V.11.: Symbolism in The Dura Synagogue

    No full text
    New Yorkxv, 21 plt, 354 p.; 31 c

    Jewish symbols in the Greco - Roman period : V.1.: The Archeological evidence from Palestine

    No full text
    New Yorkxvii, 300 p.; 31 c
    corecore