3,797 research outputs found

    Magnetic interaction at an interface between manganite and other transition metal oxides

    Full text link
    A general consideration is presented for the magnetic interaction at an interface between a perovskite manganite and other transition metal oxides. The latter is specified by the electron number nn in the d3z2−r2d_{3z^2-r^2} level as (d3z2−r2)n(d_{3z^2-r^2})^n. Based on the molecular orbitals formed at the interface and the generalized Hund's rule, the sign of the magnetic interaction is rather uniquely determined. The exception is when the d3z2−r2d_{3z^2-r^2} orbital is stabilized in the interfacial manganite layer neighboring to a (d3z2−r2)1(d_{3z^2-r^2})^1 or (d3z2−r2)2(d_{3z^2-r^2})^2 system. In this case, the magnetic interaction is sensitive to the occupancy of the Mn d3z2−r2d_{3z^2-r2} orbital. It is also shown that the magnetic interaction between the interfacial Mn layer and the bulk region can be changed. Manganite-based heterostructures thus show a rich magnetic behavior. We also present how to generalize the argument including t2gt_{2g} orbitals.Comment: 7pages, 4 figures, 1 tabl

    Ferromagnetism and orbital order in a topological ferroelectric

    Full text link
    We explore via density functional calculations the magnetic doping of a topological ferroelectric as an unconventional route to multiferroicity. Vanadium doping of the layered perovskite La2_{2}Ti2_{2}O7_{7} largely preserves electric polarization and produces robust ferromagnetic order, hence proper multiferroicity. The marked tendency of dopants to cluster into chains results in an insulating character at generic doping. Ferromagnetism stems from the symmetry breaking of the multi-orbital V system via an unusual "antiferro"-orbital order, and from the host's low-symmetry layered structure.Comment: 4 pages, 3 figures; Physical Review Letters 109, in print (2012

    Electron Confinement, Orbital Ordering, and Orbital Moments in d0d^0-d1d^1 Oxide Heterostructures

    Full text link
    The (SrTiO3_3)m_m/(SrVO3_3)n_n d0−d1d^0-d^1 multilayer system is studied with first principles methods through the observed insulator-to-metal transition with increasing thickness of the SrVO3_3 layer. When correlation effects with reasonable magnitude are included, crystal field splittings from the structural relaxations together with spin-orbit coupling (SOC) determines the behavior of the electronic and magnetic structures. These confined slabs of SrVO3_3 prefer QorbQ_{orb}=(π,π\pi,\pi) orbital ordering of ℓz=0\ell_z = 0 and ℓz=−1\ell_z = -1 (jz=−1/2j_z=-1/2) orbitals within the plane, accompanied by QspinQ_{spin}=(0,0) spin order (ferromagnetic alignment). The result is a SOC-driven ferromagnetic Mott insulator. The orbital moment of 0.75 μB\mu_B strongly compensates the spin moment on the ℓz=−1\ell_z = -1 sublattice. The insulator-metal transition for n=1→5n = 1 \to 5 (occurring between nn=4 and nn=5) is reproduced. Unlike in the isoelectronic d0−d1d^0-d^1 TiO2_2/VO2_2 (rutile structure) system and in spite of some similarities in orbital ordering, no semi-Dirac point [{\it Phys. Rev. Lett.} {\bf 102}, 166803 (2009)] is encountered, but the insulator-to-metal transition occurs through a different type of unusual phase. For n=5 this system is very near (or at) a unique semimetallic state in which the Fermi energy is topologically determined and the Fermi surface consists of identical electron and hole Fermi circles centered at kk=0. The dispersion consists of what can be regarded as a continuum of radially-directed Dirac points, forming a "Dirac circle".Comment: 9 pages, 8 figure

    Phase Competition in Ln0.5a0.5mno3 Perovskites

    Full text link
    Single crystals of the systems Pr0.5(Ca1-xSrx)0.5MnO3, (Pr1-yYy)0.5(Ca1-xSrx)0.5MnO3, and Sm0.5Sr0.5MnO3 were grown to provide a series of samples with fixed ratio Mn(III)/Mn(IV)=1 having geometric tolerance factors that span the transition from localized to itinerant electronic behavior of the MnO3 array. A unique ferromagnetic phase appears at the critical tolerance factor tc= 0.975 that separates charge ordering and localized-electron behavior for t<tc from itinerant or molecular-orbital behavior for t>tc. This ferromagnetic phase, which has to be distinguished from the ferromagnetic metallic phase stabilized at tolerance factors t>tc, separates two distinguishable Type-CE antiferromagnetic phases that are metamagnetic. Measurements of the transport properties under hydrostatic pressure were carried out on a compositions t a little below tc in order to compare the effects of chemical vs. hydrostatic pressure on the phases that compete with one another near t=tc.Comment: 10 pages. To be publised in Phys. Rev.

    First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite

    Full text link
    We present a first-principles density functional study of the structural, electronic and magnetic properties of the ferroelectric domain walls in multiferroic BiFeO3. We find that domain walls in which the rotations of the oxygen octahedra do not change their phase when the polarization reorients are the most favorable, and of these the 109 degree domain wall centered around the BiO plane has the lowest energy. The 109 degree and 180 degree walls have a significant change in the component of their polarization perpendicular to the wall; the corresponding step in the electrostatic potential is consistent with a recent report of electrical conductivity at the domain walls. Finally, we show that changes in the Fe-O-Fe bond angles at the domain walls cause changes in the canting of the Fe magnetic moments which can enhance the local magnetization at the domain walls.Comment: 9 pages, 20 figure

    t-J model of coupled Cu2_2O5_5 ladders in Sr14−x_{14-x}Cax_xCu24_{24}O41_{41}

    Full text link
    Starting from the proper charge transfer model for Cu2_2O5_5 coupled ladders in Sr14−x_{14-x}Cax_xCu24_{24}O41_{41} we derive the low energy Hamiltonian for this system. It occurs that the widely used ladder t-J model is not sufficient and has to be supplemented by the Coulomb repulsion term between holes in the neighboring ladders. Furthermore, we show how a simple mean-field solution of the derived t-J model may explain the onset of the charge density wave with the odd period in Sr14−x_{14-x}Cax_xCu24_{24}O41_{41}.Comment: 8 pages, 4 figures, 2 table

    Oxygen Permeation Through Cobalt-Containing Perovskites: Surface Oxygen Exchange vs. Lattice Oxygen Diffusion

    Get PDF
    The oxygen permeation fluxes from p′O2 to pnO2 (p′O2\u3epnO2) across cobalt-containing perovskite ceramic membranes La1−xSrxCoO3−δ and SrCo0.8Fe0.2O3−δ were measured by gas chromatography as functions of oxygen chemical potential gradient, temperature, thickness, and catalytic activity on the surface. Power indexes 0.5\u3en\u3e0 for uncatalyzed La1−xSrxCoO3−δ and 1\u3en\u3e0.5 for SrCo0.8Fe0.2O3−δ were obtained when JO2 vs. p′nO2−p\u27′nO2 was plotted as a straight line. The results clearly indicate an overall permeation process controlled by both surface oxygen exchange and bulk oxygen diffusion for uncatalyzed La1−xSrxCoO3−δ and SrCo0.8Fe0.2O3−δ. Application of a thin layer of catalytically active SrCo0.8Fe0.2O3−δ on the feeding-gas surface of La0.5Sr0.5CoO3−δ under the condition of a fixed p′O2=0.21 atm and a varied p′\u27O2 not only increases remarkably the overall oxygen flux, but also changes a mixed control to a bulk diffusion control. This enables evaluation of the bulk transport properties of the mixed conductors. A coat of SrCo0.8Fe0.2O3−δ on the permeate side has little catalytic effect, especially at low p′\u27O2 range, due to the formation of a poorly conducting brownmillerite phase. The results explicitly show a higher activation energy for the surface exchange kinetics than for the ambipolar transport in the mixed conductors. The mechanism of the surface exchange is discussed, and an analytic expression that agrees well with the experimental results is obtained
    • …
    corecore