165 research outputs found

    Response of cottonseed to direct-current glow discharge

    Get PDF
    This study was conducted to determine the effects of direct-current glow-discharge treatment, current intensity, exposure time, and energy generated during treatment on the early and total germination of Empire ¥R cottonseed. Germination counts were made at 2, 3j hf and 12 days. Three Minute glow-discharge treatments at 30^150 milliamperes and 6-minute treatments at 30~95 milliamperes significantly improved early germination. Current intensities of 100-1^0 milliamperes for 6 minutes decreased both early and total germination. Multiple regression was calculated using p germination as the dependent variable and energy, energy2, seed temperature, seed temperature2, moisture loss during treatment, and moisture loss2 as the independent variables. In this regression the coefficient of determination for energy and energy2 accounted for 91 percent of the variability in early germination and 92 percent of the variability in total germination

    Optimum site selection for blacklight insect traps as predicted by relating tobacco hornworm collections to factors describing trap surroundings

    Get PDF
    Seventy parameters describing surroundings of 51 blacklight insect trap locations on St. Croix, U. S. Virgin Islands were related to insect categories of male, mated female, virgin female, total tobacco hornworm (Manduca sexta), and the white belly (M. sexta harterti). Data were obtained from an on-site survey pertaining to slope of land at trap site, deviation of slopes from prevailing wind, roadways, incident light, slope to obstruction, and distance from traps to obstructions. Obtained from descriptive data of locations were trap density, distance from shorelines, elevation above sea level, slope of land in vicinity of traps, deviation of slope in vicinity of traps from prevailing wind, land-use category, vegetation type, geology type, groundwater potential yield, groundwater chloride, soil limitations to agriculture or development, soil association, and soil capability class. Significance of relationships between insect collections and criteria was determined by analysis of variance for 14 discrete factors, and by correlation and multiple regression analyses for the continuous factors. Criteria significantly related to collections five or more times were type of obstruction, slope to obstruction, distance to obstruction, distance to shoreline, soil limitations to agriculture and development, slope of trap site, slope of trap vicinity, and deviation of slope in vicinity of traps from prevailing wind. Significant one to four times were vegetation type, geology type, soil association, distance to roadway, related traffic flow on roadway, weighted obstruction, percent obstruction, land-use category scaled according to estimated ability to support an insect population, slope deviation at site from prevailing wind, groundwater potential yield, soil capability class, relative ultraviolet radiation of incident light, relative intensity of incident light, elevation of trap site, and trap density

    Temperature–time evolution of the Assynt Terrane of the Lewisian Gneiss Complex of Northwest Scotland from zircon U-Pb dating and Ti thermometry

    Get PDF
    The Lewisian Gneiss Complex of Northwest Scotland is a classic Precambrian basement gneiss complex. The Lewisian is divided into a number of terranes on the basis of structural, metamorphic and geochronological evidence. The most well-studied of these is the Assynt Terrane, which forms the central part of the Lewisian outcrop on the Scottish mainland. Field evidence shows that it has a complex tectonothermal history, the early stages of which remain poorly constrained. This paper sets out to better understand the chronology and thermal evolution of the Assynt Terrane through zircon U-Pb dating and Ti-in-zircon thermometry, the latter applied to the Lewisian for the first time. This is placed in context by integration with detailed field mapping, sample petrography, zircon cathodoluminescence (CL) imaging and rare earth element (REE) analysis. Zircons from six tonalite-trondhjemite-granodiorite (TTG) gneiss samples and two metasedimentary gneiss samples were analysed. The TTG gneisses were predominantly retrogressed to amphibolite-facies; zircons showed a range of CL zoning patterns and REE profiles were similar to those expected for magmatic zircon grains. Zircons from the metasedimentary gneisses also displayed a range of CL zoning patterns and are depleted relative to chondrite in heavy REEs due to the presence of garnet. Zircon analysis records a spread of concordant U-Pb ages from ∼2500 to 3000 Ma. There is no evident correlation of ages with location in the crystal or with CL zoning pattern. A weighted average of 207Pb/206Pb ages from the oldest igneous zircon cores from the TTG gneiss samples gives an age of 2958 ± 7 Ma, interpreted to be a magmatic protolith crystallisation age. A weighted average of 207Pb/206Pb ages of the youngest metamorphic rims yields an age of 2482 ± 6 Ma, interpreted to represent the last high-grade metamorphism to affect these rocks. Ti-in-zircon thermometry records minimum temperatures of 710–834 °C, interpreted to reflect magmatic crystallisation. REE profiling enabled the zircons in the metasedimentary rocks to be linked to the presence of metamorphic garnet, but resetting of U-Pb systematics precluded the determination of either protolith or metamorphic ages. Zircons from the metasedimentary gneisses generally record higher minimum temperatures (803–847 °C) than the TTG gneisses, interpreted to record zircon crystallisation in an unknown protolith

    How chemistry controls electron localization in 3d1 perovskites: A Wannier-function study

    Full text link
    In the series of 3d1 t2g perovskites, SrVO3--CaVO3--LaTiO3--YTiO3 the transition-metal d electron becomes increasingly localized and undergoes a Mott transition between CaVO3 and LaTiO3. By defining a low-energy Hubbard Hamiltonian in the basis of Wannier functions for the t2g LDA band and solving it in the single-site DMFT approximation, it was recently shown[1] that simultaneously with the Mott transition there occurs a strong suppression of orbital fluctuations due to splitting of the t2g levels. The present paper reviews and expands this work, in particular in the direction of exposing the underlying chemical mechanisms by means of ab initio LDA Wannier functions generated with the NMTO method. The Wannier functions for the t2g band exhibit covalency between the transition-metal t2g, the large cation-d, and the oxygen-p states; this covalency, which increases along the series, turns out to be responsible not only for the splittings of the t2g levels, but also for non-cubic perturbations of the hopping integrals, both of which are decisive for the Mott transition. We find good agreement with the optical and photoemission spectra, with the crystal-field splittings and orbital polarizations recently measured for the titanates, and with the metallization volume for LaTiO3. The metallization volume for YTiO3 is predicted. Using super-exchange theory, we reproduce the observed magnetic orders in LaTiO3 and YTiO3, but the results are sensitive to detail, in particular for YTiO3 which, without the Jahn-Teller distortion, would be AFM C- or A-type, rather than FM. Finally, we show that it possible to unfold the orthorhombic t2g LDA bandstructure to a pseudocubic zone. In this zone, the lowest band is separated from the two others by a direct gap and has a width, W_I, which is significantly smaller than that, W, of the entire t2g band. The progressive GdFeO3-type distortion favours electron localization by decreasing W, by increasing the splitting of the t2g levels and by decreasing W_I. Our conclusions concerning the roles of GdFeO3-type and JT distortions agree with those of Mochizuki and Imada [2].Comment: Published version, final. For high resolution figures see http://www.fkf.mpg.de/andersen/docs/pub/abstract2004+/pavarini_02.pd

    Re-evaluating ambiguous age relationships in Archean cratons: Implications for the origin of ultramafic-mafic complexes in the Lewisian Gneiss Complex

    Get PDF
    Archean ultramafic-mafic complexes have been the focus of important and often contentious geological and geodynamic interpretations. However, their age relative to the other components of Archean cratons are often poorly-constrained, introducing significant ambiguity when interpreting their origin and geodynamic significance. The Lewisian Gneiss Complex (LGC) of the northwest Scottish mainland – a high-grade, tonalite-trondhjemite-granodiorite (TTG) terrane that forms part of the North Atlantic Craton (NAC) – contains a number of ultramafic-mafic complexes whose origin and geodynamic significance have remained enigmatic since they were first described. Previous studies have interpreted these complexes as representing a wide-range of geological environments, from oceanic crust, to the sagducted remnants of Archean greenstone belts. These interpretations, which are often critically dependent upon the ages of the complexes relative to the surrounding rocks, have disparate implications for Archean geodynamic regimes (in the NAC and globally). Most previous authors have inferred that the ultramafic-mafic complexes of the LGC pre-date the TTG magmas. This fundamental age relationship is re-evaluated in this investigation through re-mapping of the Geodh’ nan Sgadan Complex (where tonalitic gneiss reportedly cross-cuts mafic rocks) and new mapping of the 7 km2 Ben Strome Complex (the largest ultramafic-mafic complex in the LGC), alongside detailed petrography and spinel mineral chemistry. This new study reveals that, despite their close proximity in the LGC (12 km), the Ben Strome and Geodh’ nan Sgadan Complexes are petrogenetically unrelated, indicating that the LGC (and thus NAC) records multiple temporally and/or petrogenetically distinct phases of ultramafic-mafic Archean magmatism that has been masked by subsequent high-grade metamorphism. Moreover, field observations and spinel mineral chemistry demonstrate that the Ben Strome Complex represents a layered intrusion that was emplaced into a TTG-dominated crust. Further to representing a significant re-evaluation of the LGC’s magmatic evolution, these findings have important implications for the methodologies utilised in deciphering the origin of Archean ultramafic-mafic complexes globally, where material suitable for dating is often unavailable and field relationships are commonly ambiguous

    Charge disproportionation and the pressure-induced insulator?metal transition in cubic perovskite PbCrO3

    Get PDF
    The perovskite PbCrO3 is an antiferromagnetic insulator. However, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. We report a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. We argue that a charge disproportionation 3Cr4+ → 2Cr3+ + Cr6+ in association with the 6s-p hybridization on the Pb2+ is responsible for the insulating ground state of PbCrO3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT+U) calculations.Fil: Cheng, Jinguang. University Of Texas At Austin; Estados Unidos. Chinese Academy Of Sciences; República de China. University of Tokyo. Institute for Solid State Physics; JapónFil: Kweon, K. E.. University Of Texas At Austin; Estados UnidosFil: Larregola, Sebastian Alberto. University Of Texas At Austin; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Ding, Yang. Argonne National Laboratory; Estados UnidosFil: Shirako, Y.. University Of Texas At Austin; Estados UnidosFil: Marshall, L. G.. University Of Texas At Austin; Estados Unidos. Northeastern University; Estados UnidosFil: Li, Z. Y.. University Of Texas At Austin; Estados UnidosFil: Li, X.. University Of Texas At Austin; Estados UnidosFil: Dos Santos, António M.. Oak Ridge National Laboratory. Quantum Condensed Matter Division; Estados UnidosFil: Suchomel, M. R.. Argonne National Laboratory; Estados UnidosFil: Matsubayashi, K.. University of Tokyo. Institute for Solid State Physics; JapónFil: Uwatoko, Y.. University of Tokyo. Institute for Solid State Physics; JapónFil: Hwang, G. S.. University Of Texas At Austin; Estados UnidosFil: Goodenough, John B.. University Of Texas At Austin; Estados UnidosFil: Zhou, J. S.. University Of Texas At Austin; Estados Unido

    Rules for Growth: Promoting Innovation and Growth Through Legal Reform

    Get PDF
    The United States economy is struggling to recover from its worst economic downturn since the Great Depression. After several huge doses of conventional macroeconomic stimulus - deficit-spending and monetary stimulus - policymakers are understandably eager to find innovative no-cost ways of sustaining growth both in the short and long runs. In response to this challenge, the Kauffman Foundation convened a number of America’s leading legal scholars and social scientists during the summer of 2010 to present and discuss their ideas for changing legal rules and policies to promote innovation and accelerate U.S. economic growth. This meeting led to the publication of Rules for Growth: Promoting Innovation and Growth Through Legal Reform, a comprehensive and groundbreaking volume of essays prescribing a new set of growth-promoting policies for policymakers, legal scholars, economists, and business men and women. Some of the top Rules include: • Reforming U.S. immigration laws so that more high-skilled immigrants can launch businesses in the United States. • Improving university technology licensing practices so university-generated innovation is more quickly and efficiently commercialized. • Moving away from taxes on income that penalize risk-taking, innovation, and employment while shifting toward a more consumption-based tax system that encourages saving that funds investment. In addition, the research tax credit should be redesigned and made permanent. • Overhauling local zoning rules to facilitate the formation of innovative companies. • Urging judges to take a more expansive view of flexible business contracts that are increasingly used by innovative firms. • Urging antitrust enforcers and courts to define markets more in global terms to reflect contemporary realities, resist antitrust enforcement from countries with less sound antitrust regimes, and prohibit industry trade protection and subsidies. • Reforming the intellectual property system to allow for a post-grant opposition process and address the large patent application backlog by allowing applicants to pay for more rapid patent reviews. • Authorizing corporate entities to form digitally and use software as a means for setting out agreements and bylaws governing corporate activities. The collective essays in the book propose a new way of thinking about the legal system that should be of interest to policymakers and academic scholars alike. Moreover, the ideas presented here, if embodied in law, would augment a sustained increase in U.S. economic growth, improving living standards for U.S. residents and for many in the rest of the world

    Modeling the vacuolar storage of malate shed lights on pre- and post-harvest fruit acidity

    Get PDF
    Background: Malate is one of the most important organic acids in many fruits and its concentration plays a critical role in organoleptic properties. Several studies suggest that malate accumulation in fruit cells is controlled at the level of vacuolar storage. However, the regulation of vacuolar malate storage throughout fruit development, and the origins of the phenotypic variability of the malate concentration within fruit species remain to be clarified. In the present study, we adapted the mechanistic model of vacuolar storage proposed by Lobit et al. in order to study the accumulation of malate in pre and postharvest fruits. The main adaptation concerned the variation of the free energy of ATP hydrolysis during fruit development. Banana fruit was taken as a reference because it has the particularity of having separate growth and post-harvest ripening stages, during which malate concentration undergoes substantial changes. Moreover, the concentration of malate in banana pulp varies greatly among cultivars which make possible to use the model as a tool to analyze the genotypic variability. The model was calibrated and validated using data sets from three cultivars with contrasting malate accumulation, grown under different fruit loads and potassium supplies, and harvested at different stages. Results: The model predicted the pre and post-harvest dynamics of malate concentration with fairly good accuracy for the three cultivars (mean RRMSE = 0.25-0.42). The sensitivity of the model to parameters and input variables was analyzed. According to the model, vacuolar composition, in particular potassium and organic acid concentrations, had an important effect on malate accumulation. The model suggested that rising temperatures depressed malate accumulation. The model also helped distinguish differences in malate concentration among the three cultivars and between the pre and post-harvest stages by highlighting the probable importance of proton pump activity and particularly of the free energy of ATP hydrolysis and vacuolar pH. Conclusions: This model appears to be an interesting tool to study malate accumulation in pre and postharvest fruits and to get insights into the ecophysiological determinants of fruit acidity, and thus may be useful for fruit quality improvement. (Résumé d'auteur

    Digital methods for ethnography: analytical concepts for ethnographers exploring social media environments

    Get PDF
    The aim of this article is to introduce some analytical concepts suitable for ethnographers dealing with social media environments. As a result of the growth of social media, the Internet structure has become a very complex, fluid, and fragmented space. Within this space, it is not always possible to consider the 'classical' online community as the privileged field site for the ethnographer, in which s/he immerses him/herself. Differently, taking inspiration from some methodological principles of the Digital Methods paradigm, I suggest that the main task for the ethnographer moving across social media environments should not be exclusively that of identifying an online community to delve into but of mapping the practices through which Internet users and digital devices structure social formations around a focal object (e.g., a brand). In order to support the ethnographer in the mapping of social formations within social media environments, I propose five analytical concepts: community, public, crowd, self-presentation as a tool, and user as a device
    corecore