41 research outputs found

    A genetically engineered thermally responsive sustained release curcumin depot to treat neuroinflammation.

    Get PDF
    Radiculopathy, a painful neuroinflammation that can accompany intervertebral disc herniation, is associated with locally increased levels of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). Systemic administration of TNF antagonists for radiculopathy in the clinic has shown mixed results, and there is growing interest in the local delivery of anti-inflammatory drugs to treat this pathology as well as similar inflammatory events of peripheral nerve injury. Curcumin, a known antagonist of TNFα in multiple cell types and tissues, was chemically modified and conjugated to a thermally responsive elastin-like polypeptide (ELP) to create an injectable depot for sustained, local delivery of curcumin to treat neuroinflammation. ELPs are biopolymers capable of thermally-triggered in situ depot formation that have been successfully employed as drug carriers and biomaterials in several applications. ELP-curcumin conjugates were shown to display high drug loading, rapidly release curcumin in vitro via degradable carbamate bonds, and retain in vitro bioactivity against TNFα-induced cytotoxicity and monocyte activation with IC50 only two-fold higher than curcumin. When injected proximal to the sciatic nerve in mice via intramuscular (i.m.) injection, ELP-curcumin conjugates underwent a thermally triggered soluble-insoluble phase transition, leading to in situ formation of a depot that released curcumin over 4days post-injection and decreased plasma AUC 7-fold

    Identification of genes and pathways associated with cytotoxic T lymphocyte infiltration of serous ovarian cancer

    Get PDF
    BACKGROUND: Tumour-infiltrating lymphocytes (TILs) are predictors of disease-specific survival (DSS) in ovarian cancer. It is largely unknown what factors contribute to lymphocyte recruitment. Our aim was to evaluate genes and pathways contributing to infiltration of cytotoxic T lymphocytes (CTLs) in advanced-stage serous ovarian cancer. METHODS: For this study global gene expression was compared between low TIL (n=25) and high TIL tumours (n=24). The differences in gene expression were evaluated using parametric T-testing. Selectively enriched biological pathways were identified with gene set enrichment analysis. Prognostic influence was validated in 157 late-stage serous ovarian cancer patients. Using immunohistochemistry, association of selected genes from identified pathways with CTL was validated. RESULTS: The presence of CTL was associated with 320 genes and 23 pathways (P<0.05). In addition, 54 genes and 8 pathways were also associated with DSS in our validation cohort. Immunohistochemical evaluation showed strong correlations between MHC class I and II membrane expression, parts of the antigen processing and presentation pathway, and CTL recruitment. CONCLUSION: Gene expression profiling and pathway analyses are valuable tools to obtain more understanding of tumour characteristics influencing lymphocyte recruitment in advanced-stage serous ovarian cancer. Identified genes and pathways need to be further investigated for suitability as therapeutic targets

    Targeting microRNAs as key modulators of tumor immune response

    Full text link

    Radiolabeled inhibitors as probes for imaging mutant IDH1 expression in gliomas: Synthesis and preliminary evaluation of labeled butyl-phenyl sulfonamide analogs.

    No full text
    INTRODUCTION: Malignant gliomas frequently harbor mutations in the isocitrate dehydrogenase 1 (IDH1) gene. Studies suggest that IDH mutation contributes to tumor pathogenesis through mechanisms that are mediated by the neomorphic metabolite of the mutant IDH1 enzyme, 2-hydroxyglutarate (2-HG). The aim of this work was to synthesize and evaluate radiolabeled compounds that bind to the mutant IDH1 enzyme with the goal of enabling noninvasive imaging of mutant IDH1 expression in gliomas by positron emission tomography (PET). METHODS: A small library of nonradioactive analogs were designed and synthesized based on the chemical structure of reported butyl-phenyl sulfonamide inhibitors of mutant IDH1. Enzyme inhibition assays were conducted using purified mutant IDH1 enzyme, IDH1-R132H, to determine the IC50 and the maximal inhibitory efficiency of the synthesized compounds. Selected compounds, 1 and 4, were labeled with radioiodine ((125)I) and/or (18)F using bromo- and phenol precursors, respectively. In vivo behavior of the labeled inhibitors was studied by conducting tissue distribution studies with [(125)I]1 in normal mice. Cell uptake studies were conducted using an isogenic astrocytoma cell line that carried a native IDH1-R132H mutation to evaluate the potential uptake of the labeled inhibitors in IDH1-mutated tumor cells. RESULTS: Enzyme inhibition assays showed good inhibitory potency for compounds that have iodine or a fluoroethoxy substituent at the ortho position of the phenyl ring in compounds 1 and 4 with IC50 values of 1.7 μM and 2.3 μM, respectively. Compounds 1 and 4 inhibited mutant IDH1 activity and decreased the production of 2-HG in an IDH1-mutated astrocytoma cell line. Radiolabeling of 1 and 4 was achieved with an average radiochemical yield of 56.6 ± 20.1% for [(125)I]1 (n = 4) and 67.5 ± 6.6% for [(18)F]4 (n = 3). [(125)I]1 exhibited favorable biodistribution characteristics in normal mice, with rapid clearance from the blood and elimination via the hepatobiliary system by 4 h after injection. The uptake of [(125)I]1 in tumor cells positive for IDH1-R132H was significantly higher compared to isogenic WT-IDH1 controls, with a maximal uptake ratio of 1.67 at 3 h post injection. Co-incubation of the labeled inhibitors with the corresponding nonradioactive analogs, and decreasing the normal concentrations of FBS (10%) in the incubation media substantially increased the uptake of the labeled inhibitors in both the IDH1-mutant and WT-IDH1 tumor cell lines, suggesting significant non-specific binding of the synthesized labeled butyl-phenyl sulfonamide inhibitors. CONCLUSIONS: These data demonstrate the feasibility of developing radiolabeled probes for the mutant IDH1 enzyme based on enzyme inhibitors. Further optimization of the labeled inhibitors by modifying the chemical structure to decrease the lipophilicity and to increase potency may yield compounds with improved characteristics as probes for imaging mutant IDH1 expression in tumors

    Disease Knowledge, Illness Perceptions, and Quality of Life in Adolescents With Sickle Cell Disease: Is There a Link?

    No full text
    Disease knowledge, illness perceptions, and quality of life (QOL) were examined in 150 adolescents (mean age = 16.1 years, SD = 1.9; 49.3% males) with sickle cell disease (SCD). Females had higher knowledge ( P = .004), lower QOL ( P = .02), and perceived their illness to be more unpredictable ( P = .03). Those with more severe disease perceived their illness to be unpredictable with worse outcomes. Those with higher knowledge scores perceived their illness to be chronic, made more sense of their illness, and perceived greater personal and treatment control. Final hierarchical regression model showed that secondary education as compared to primary education level ( P < .001) was positively correlated whereas disease severity ( P < .001), perceived unpredictability ( P = .024), and negative emotions ( P < .001) were negatively correlated with QOL. Health practitioners should assess adolescents’ illness perceptions and encouraging continuing schooling and addressing emotional/psychological problems could improve their QOL

    Rewilding: science, practice, and politics

    No full text
    Rewilding is being promoted as an ambitious alternative to current approaches to nature conservation. Interest is growing in popular and scientific literatures, and rewilding is the subject of significant comment and debate, outstripping scientific research and conservation practice. Projects and research are found the world over, with concentrations in Europe, North America, and on tropical islands. A common aim is to maintain, or increase, biodiversity, while reducing the impact of present and past human interventions through the restoration of species and ecological processes. The term rewilding has been applied to diverse concepts and practices. We review the historical emergence of the term and its various overlapping meanings, aims, and approaches, and illustrate this through a description of four flagship rewilding case studies. The science of rewilding has centered on three different historical baselines: the Pleistocene, the Holocene, and novel contemporary ecosystems. The choice of baseline has differing implications for conservation in a variety of contexts. Rewilding projects involve a range of practical components—such as passive management, reintroduction, and taxon substitution—some of which have attracted criticism. They also raise a series of political, social, and ethical concerns where they conflict with more established forms of environmental management. In conclusion, we summarize the different goals, approaches, tools, and contexts that account for the variations in rewilding and identify priorities for future research and practice
    corecore