139 research outputs found

    On the presence and functional significance of sympathetic premotor neurons with collateralized spinal axons in the rat

    Get PDF
    KEY POINTS: Spinally-projecting neurons of the rostral ventrolateral medulla (RVLM) determine sympathetic outflow to different territories of the body. Previous studies suggest the existence of RVLM neurons with distinct functional classes, such as neurons that target sympathetic nerves bound for functionally-similar tissue types (e.g. muscle vasculature). The existence of RVLM neurons with more general actions had not been critically tested. Using viral tracing, we show that a significant minority of RVLM neurons send axon collaterals to disparate spinal segments (T2 and T10 ). Furthermore, optogenetic activation of sympathetic premotor neurons projecting to lumbar spinal segments also produced activation of sympathetic nerves from rostral spinal segments that innervate functionally diverse tissues (heart and forelimb muscle). These findings suggest the existence of individual RVLM neurons for which the axons branch to drive sympathetic preganglionic neurons of more than one functional class and may be able to produce global changes in sympathetic activity. ABSTRACT: We investigate the extent of spinal axon collateralization of rat rostral ventrolateral medulla (RVLM) sympathetic premotor neurons and its functional consequences. In anatomical tracing experiments, two recombinant herpes viral vectors with retrograde tropism and expressing different fluorophores were injected into the intermediolateral column at upper thoracic and lower thoracic levels. Histological analysis revealed that ∼21% of RVLM bulbospinal neurons were retrogradely labelled by both vectors, indicating substantial axonal collateralization to disparate spinal segments. In functional experiments, another virus with retrograde tropism, a canine adenovirus expressing Cre recombinase, was injected into the left intermediolateral horn around the thoracolumbar junction, whereas a Cre-dependent viral vector encoding Channelrhodopsin2 under LoxP control was injected into the ipsilateral RVLM. In subsequent terminal experiments, blue laser light (473 nm × 20 ms pulses at 10 mW) was used to activate RVLM neurons that had been transduced by both vectors. Stimulus-locked activation, at appropriate latencies, was recorded in the following pairs of sympathetic nerves: forelimb and hindlimb muscle sympathetic fibres, as well as cardiac and either hindlimb muscle or lumbar sympathetic nerves. The latter result demonstrates that axon collaterals of lumbar-projecting RVLM neurons project to, and excite, both functionally similar (forelimb and hindlimb muscle) and functionally dissimilar (lumbar and cardiac) preganglionic neurons. Taken together, these findings show that the axons of a significant proportion of RVLM neurons collateralise widely within the spinal cord, and that they may excite preganglionic neurons of more than one functional class

    Somatostatin 2 Receptors in the Spinal Cord Tonically Restrain Thermogenic, Cardiac and Other Sympathetic Outflows

    Get PDF
    The anatomical and functional characterization of somatostatin (SST) and somatostatin receptors (SSTRs) within the spinal cord have been focused in the dorsal horn, specifically in relation to sensory afferent processing. However, SST is also present within the intermediolateral cell column (IML), which contains sympathetic preganglionic neurons (SPN). We investigated the distribution of SSTR2 within the thoracic spinal cord and show that SSTR2A and SSTR2B are expressed in the dorsal horn and on SPN and non-SPN in or near the IML. The effects of activating spinal SSTR and SSTR2 were sympathoinhibition, hypotension, bradycardia, as well as decreases in interscapular brown adipose tissue temperature and expired CO2, in keeping with the well-described inhibitory effects of activating SSTR receptors. These data indicate that spinal SST can decrease sympathetic, cardiovascular and thermogenic activities. Unexpectedly blockade of SSTR2 revealed that SST tonically mantains sympathetic, cardiovascular and thermogenic functions, as activity in all measured parameters increased. In addition, high doses of two antagonists evoked biphasic responses in sympathetic and cardiovascular outflows where the initial excitatory effects were followed by profound but transient falls in sympathetic nerve activity, heart rate and blood pressure. These latter effects, together with our findings that SSTR2A are expressed on GABAergic, presumed interneurons, are consistent with the idea that SST2R tonically influence a diffuse spinal GABAergic network that regulates the sympathetic cardiovascular outflow. As described here and elsewhere the source of tonically released spinal SST may be of intra- and/or supra-spinal origin

    Effective and durable resistance against plant parasitic nematodes

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Neuropeptides and the Central Neural Regulation of the Cardiorespiratory System

    Get PDF
    AbstractThis review considers the role played by neuropeptides which, unlike GABA and glutamate (acting at ligand-gated ion channels), modulate cardiorespiratory reflexes slowly through metabotropic receptors. Our findings reveal that reflexes may be differentially modulated so that depending on which neuropeptide agonist is microinjected into the rostral ventrolateral medulla, differential effects on reflexes are observed. This means that, for example, the mu opioid agonist DAMGO will attenuate the sympathetic baroreflex but not the somatosympathetic reflex. On the other hand, the delta agonist DPDPE attenuates the somatosympathetic reflex but has no effect on baroreflex function. These, and other data with other peptides, suggest that neuropeptides may play a crucial role in the modulation of different adaptive reflexes

    Maps of cardiovascular and respiratory regions of rat ventral medulla : focus on the caudal medulla

    No full text
    The ventral medulla oblongata is critical for cardiorespiratory regulation. Here we review previous literature relating to sites within the ventral medulla that have been identified as having a ‘cardiovascular’ or ‘respiratory’ function. Together with the maps generated here, of sites from which cardiovascular and respiratory responses were evoked by glutamate microinjection, specific ‘cardiovascular’ regions have been defined and delineated. Commonly investigated regions, including the vasopressor rostral ventrolateral medulla (RVLM) and vasodepressor caudal ventrolateral medulla (CVLM), or areas only described by others, such as the medullary cerebral vasodilator area, are included for completeness. Emphasis is given to the caudal medulla, where three pressor regions, the caudal pressor area (CPA), the intermediate pressor area (IPA) and the medullo-cervical pressor area (MCPA), caudal to the vasodepressor CVLM were defined in the original data provided. The IPA is most responsive under pentobarbitone rather than urethane anaesthesia clearly delineating it from both the rostrally located CPA and the caudally located MCPA. The description of these multiple pressor areas appears to clarify the confusion that surrounds the identification of the ‘CPA’. Also noted is a vasopressor region adjacent to the vasodepressor CVLM. Apart from the well described ventral respiratory column, a region medial to the pre-Bötzinger is described, from which increases in both phrenic nerve frequency and amplitude were evoked. Limitations associated with the technique of glutamate microinjection to define functionally specific regions are discussed. Particular effort has been made to define and delineate the regions with respect to ventrally located anatomical landmarks rather than the commonly used ventral surface or dorsal landmarks such as the obex or calamus scriptorius that may vary with the brain orientation or histological processing. This should ensure that a region can easily be defined by all investigators. Study of defined regions will help expedite the identification of the role of the multiple cell groups with diverse neurotransmitter complements that exist even within each of the regions described, in coordinating the delivery of oxygenated blood to the tissues.13 page(s
    • …
    corecore