228 research outputs found
Bridging the gap between social tagging and semantic annotation: E.D. the Entity Describer
Semantic annotation enables the development of efficient computational methods for analyzing and interacting with information, thus maximizing its value. With the already substantial and constantly expanding data generation capacity of the life sciences as well as the concomitant increase in the knowledge distributed in scientific articles, new ways to produce semantic annotations of this information are crucial. While automated techniques certainly facilitate the process, manual annotation remains the gold standard in most domains. In this manuscript, we describe a prototype mass-collaborative semantic annotation system that, by distributing the annotation workload across the broad community of biomedical researchers, may help to produce the volume of meaningful annotations needed by modern biomedical science. We present E.D., the Entity Describer, a mashup of the Connotea social tagging system, an index of semantic web-accessible controlled vocabularies, and a new public RDF database for storing social semantic annotations
The Cure: Making a game of gene selection for breast cancer survival prediction
Motivation: Molecular signatures for predicting breast cancer prognosis could
greatly improve care through personalization of treatment. Computational
analyses of genome-wide expression datasets have identified such signatures,
but these signatures leave much to be desired in terms of accuracy,
reproducibility and biological interpretability. Methods that take advantage of
structured prior knowledge (e.g. protein interaction networks) show promise in
helping to define better signatures but most knowledge remains unstructured.
Crowdsourcing via scientific discovery games is an emerging methodology that
has the potential to tap into human intelligence at scales and in modes
previously unheard of. Here, we developed and evaluated a game called The Cure
on the task of gene selection for breast cancer survival prediction. Our
central hypothesis was that knowledge linking expression patterns of specific
genes to breast cancer outcomes could be captured from game players. We
envisioned capturing knowledge both from the players prior experience and from
their ability to interpret text related to candidate genes presented to them in
the context of the game.
Results: Between its launch in Sept. 2012 and Sept. 2013, The Cure attracted
more than 1,000 registered players who collectively played nearly 10,000 games.
Gene sets assembled through aggregation of the collected data clearly
demonstrated the accumulation of relevant expert knowledge. In terms of
predictive accuracy, these gene sets provided comparable performance to gene
sets generated using other methods including those used in commercial tests.
The Cure is available at http://genegames.org/cure
- …