16 research outputs found

    Development of criteria for epilepsy genetic testing in Ontario, Canada

    Get PDF
    Multiple genes/variants have been implicated in various epileptic conditions. However, there is little general guidance available on the circumstances in which genetic testing is indicated and test selection in order to guide optimal test appropriateness and benefit. This is an account of the development of guidelines for genetic testing in epilepsy, which have been developed in Ontario, Canada. The Genetic Testing Advisory Committee was established in Ontario to review the clinical utility and validity of genetic tests and the provision of genetic testing in Ontario. As part of their mandate, the committee also developed recommendations and guidelines for genetic testing in epilepsy. The recommendations include mandatory prerequisites for an epileptology/geneticist/clinical biochemical geneticist consultation, prerequisite diagnostic procedures, circumstances in which genetic testing is indicated and not indicated and guidance for selection of genetic tests, including their general limitations and considerations. These guidelines represent a step toward the development of evidence-based gene panels for epilepsy in Ontario, the repatriation of genetic testing for epilepsy into Ontario molecular genetic laboratories and public funding of genetic tests for epilepsy in Ontario

    Families\u27 healthcare experiences for children with inherited metabolic diseases: Protocol for a mixed methods cohort study

    Get PDF
    Introduction Children with inherited metabolic diseases (IMDs) often have complex and intensive healthcare needs and their families face challenges in receiving high-quality, family centred health services. Improvement in care requires complex interventions involving multiple components and stakeholders, customised to specific care contexts. This study aims to comprehensively understand the healthcare experiences of children with IMDs and their families across Canada. Methods and analysis A two-stage explanatory sequential mixed methods design will be used. Stage 1: quantitative data on healthcare networks and encounter experiences will be collected from 100 parent/guardians through a care map, 2 baseline questionnaires and 17 weekly diaries over 5-7 months. Care networks will be analysed using social network analysis. Relationships between demographic or clinical variables and ratings of healthcare experiences across a range of family centred care dimensions will be analysed using generalised linear regression. Other quantitative data related to family experiences and healthcare experiences will be summarised descriptively. Ongoing analysis of quantitative data and purposive, maximum variation sampling will inform sample selection for stage 2: a subset of stage 1 participants will participate in one-on-one videoconference interviews to elaborate on the quantitative data regarding care networks and healthcare experiences. Interview data will be analysed thematically. Qualitative and quantitative data will be merged during analysis to arrive at an enhanced understanding of care experiences. Quantitative and qualitative data will be combined and presented narratively using a weaving approach (jointly on a theme-by-theme basis) and visually in a side-by-side joint display. Ethics and dissemination The study protocol and procedures were approved by the Children\u27s Hospital of Eastern Ontario\u27s Research Ethics Board, the University of Ottawa Research Ethics Board and the research ethics boards of each participating study centre. Findings will be published in peer-reviewed journals and presented at scientific conferences

    Molecular Characterization of NRXN1 Deletions from 19,263 Clinical Microarray Cases Identifies Exons Important for Neurodevelopmental Disease Expression

    Get PDF
    PURPOSE: The purpose of the current study was to assess the penetrance of NRXN1 deletions. METHODS: We compared the prevalence and genomic extent of NRXN1 deletions identified among 19,263 clinically referred cases to that of 15,264 controls. The burden of additional clinically relevant copy-number variations (CNVs) was used as a proxy to estimate the relative penetrance of NRXN1 deletions. RESULTS: We identified 41 (0.21%) previously unreported exonic NRXN1 deletions ascertained for developmental delay/intellectual disability that were significantly greater than in controls (odds ratio (OR) = 8.14; 95% confidence interval (CI): 2.91-22.72; P \u3c 0.0001). Ten (22.7%) of these had a second clinically relevant CNV. Subjects with a deletion near the 3\u27 end of NRXN1 were significantly more likely to have a second rare CNV than subjects with a 5\u27 NRXN1 deletion (OR = 7.47; 95% CI: 2.36-23.61; P = 0.0006). The prevalence of intronic NRXN1 deletions was not statistically different between cases and controls (P = 0.618). The majority (63.2%) of intronic NRXN1 deletion cases had a second rare CNV at a prevalence twice as high as that for exonic NRXN1 deletion cases (P = 0.0035). CONCLUSIONS: The results support the importance of exons near the 5\u27 end of NRXN1 in the expression of neurodevelopmental disorders. Intronic NRXN1 deletions do not appear to substantially increase the risk for clinical phenotypes.Genet Med 19 1, 53-61

    Assessment of candidate regions in Shwachman syndrome

    No full text
    grantor: University of TorontoShwachman syndrome is an autosomal recessive disorder involving the developmental delay and/or dysfunction of the exocrine pancreas, hematological, and skeletal systems. A constitutional translocation, t(6;12)(q 16.2;q21.2), reported in one patient suggested candidate regions for the genetic defect. A preliminary physical map of the chromosome 6 breakpoint region did not provide sufficient evidence of disruption of mapped transcripts. Subsequent analysis of genetic markers at the breakpoint region in thirteen multiplex families yielded lod scores less than -2.0, excluding these loci as candidates. A genome scan suggested non-random segregation of chromosome 7p with the disease. Further analysis detected lod scores greater than 5.0 which supported linkage at 7p12-7q11. The major locus for Shwachman syndrome has been identified, indicating the broad phenotypic spectrum is a single disease entity. Recombinant mapping refined the Shwachman syndrome critical region to 3.1 cM. Further refinement has been hindered by discrepant marker order, to be rectified by physical mapping.M.Sc

    Further delineation of Basel-Vanagaite-Smirin-Yosef syndrome: Report of three patients.

    No full text
    Basel-Vanagaite-Smirin-Yosef syndrome is a recently described autosomal recessive intellectual disability syndrome caused by variants in the MED25 gene. While it was originally identified in Brazil, it was further described in Israel by authors who are now the namesake of the condition. A 2018 publication further contributed to its delineation, but the patient\u27s phenotype was complicated by a dual diagnosis. More recently, an article describing a set of affected siblings was published. We describe three, previously unreported, patients showing clinical variability for this newly defined syndrome. The major features determined by reverse phenotyping include significant to profound developmental delays/intellectual disability with absent or delayed speech, epilepsy, ocular abnormalities, cleft lip and/or palate, congenital heart disease, urogenital anomalies, skeletal abnormalities, brain malformations and/or microcephaly, failure to thrive, and dysmorphic features. The authors suggest the delineation of an acronym using the gene name and common features seen across the majority of patients reported so far. This new nomination, MED-DOCS, may help clinicians to recognize, suspect, and remember this novel syndrome

    De novo STXBP1 Mutations in Two Patients With Developmental Delay With or Without Epileptic Seizures

    No full text
    Objectives: Mutations in the STXBP1 gene have been associated with epileptic encephalopathy. Previous studies from in vitro neuroblastoma 2A cells showed that haploinsufficiency of STXBP1 is the mechanism for epileptic encephalopathy. In this ex vivo study, STXPB1 DNA mutations and RNA expression were assessed from two patients to help understand the impact of STXBP1 mutations on the disease etiology and mechanism.Methods: Microarray analysis and DNA sequencing were performed on two children with development delay, one with and one without infantile spasms. Different pathogenic mutations of STXBP1 were identified in the patients and RNA expression of STXPB1 was then performed by RT-Q-PCR on RNA extracted from blood samples of each patient.Results: Pathogenic deletion [of exons 13-20 and 3 ' downstream of STXBP1] and nonsense mutation [c.1663G>T (p.Glu555X) in exon 18 of STXBP1] were detected from the two patients, respectively. RNA analysis showed that 1) the deletion mediated RNA decay, and that 2) no RNA decay was identified for the nonsense mutation at codon 555 which predicts a truncated STXBP1 protein.Significance: Our RNA expression analyses from the patient blood samples are the first ex vivo studies to support that both haploinsufficiency and truncation of STXBP1 protein (either dominant negative or haploinsufficiency) are causative mechanisms for epileptic encephalopathies, intellectual disability and developmental delay. The RNA assay also suggests that escape from nonsense-mediated RNA decay is possible when the nonsense mutation resides <50 nucleotides upstream of the last coding exon-exon junction even in the presence of additional non-coding exons that are 3 ' downstream of the last coding exon

    Shwachman-Diamond Syndrome with Exocrine Pancreatic Dysfunction and Bone Marrow Failure Maps to the Centromeric Region of Chromosome 7

    Get PDF
    Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by exocrine pancreatic insufficiency and hematologic and skeletal abnormalities. A genomewide scan of families with SDS was terminated at ∼50% completion, with the identification of chromosome 7 markers that showed linkage with the disease. Finer mapping revealed significant linkage across a broad interval that included the centromere. The maximum two-point LOD score was 8.7, with D7S473, at a recombination fraction of 0. The maximum multipoint LOD score was 10, in the interval between D7S499 and D7S482 (5.4 cM on the female map and 0 cM on the male map), a region delimited by recombinant events detected in affected children. Evidence from all 15 of the multiplex families analyzed provided support for the linkage, consistent with a single locus for SDS. However, the presence of several different mutations is suggested by the heterogeneity of disease-associated haplotypes in the candidate region
    corecore