8 research outputs found

    Identification of capillary rarefaction using intracoronary wave intensity analysis with resultant prognostic implications for cardiac allograft patients

    Get PDF
    Aims: Techniques for identifying specific microcirculatory structural changes are desirable. As such, capillary rarefaction constitutes one of the earliest changes of cardiac allograft vasculopathy (CAV) in cardiac allograft recipients, but its identification with coronary flow reserve (CFR) or intracoronary resistance measurements is hampered because of non-selective interrogation of the capillary bed. We therefore investigated the potential of wave intensity analysis (WIA) to assess capillary rarefaction and thereby predict CAV. Methods and results: Fifty-two allograft patients with unobstructed coronary arteries and normal left ventricular (LV) function were assessed. Adequate aortic pressure and left anterior descending artery flow measurements at rest and with intracoronary adenosine were obtained in 46 of which 2 were lost to follow-up. In a subgroup of 15 patients, simultaneous RV biopsies were obtained and analysed for capillary density. Patients were followed up with 1-3 yearly screening angiography. A significant relationship with capillary density was noted with CFR (r = 0.52, P = 0.048) and the backward decompression wave (BDW) (r = -0.65, P < 0.01). Over a mean follow-up of 9.3 ± 5.2 years patients with a smaller BDW had an increased risk of developing angiographic CAV (hazard ratio 2.89, 95% CI 1.12-7.39; P = 0.03). Additionally, the index BDW was lower in those who went on to have a clinical CAV-events (P = 0.04) as well as more severe disease (P = 0.01). Conclusions: Within cardiac transplant patients, WIA is able to quantify the earliest histological changes of CAV and can predict clinical and angiographic outcomes. This proof-of-concept for WIA also lends weight to its use in the assessment of other disease processes in which capillary rarefaction is involved

    Influence of the amount of myocardium subtended to a coronary stenosis on the index of microcirculatory resistance. Implications for the invasive assessment of microcirculatory function in ischaemic heart disease

    No full text
    Aims: The index of microcirculatory resistance (IMR) is increasingly used to quantify microcirculatory function. However, in normal coronary arteries, resistance increases with the branching structure of the coronary tree, which suggests that IMR could be influenced by the amount of downstream myocardial mass (MM). We aimed to evaluate the influence of the amount of MM subtended to an intermediate stenosis on the IMR. Methods and results: IMR, fractional flow reserve and coronary flow reserve (CFR) were measured in 123 coronary arteries (102 patients) with intermediate stenosis. Jeopardised MM was estimated with the Myocardial Jeopardy Index (MJI). MM was inversely associated with IMR (R-2=0.16, p = 30 U subtended lower amounts of MM than vessels with IMR = 30 U and preserved CFR supplied the smallest MM amounts, suggesting an anatomically reduced but functionally preserved vascular bed. Conclusions: The amount of myocardium subtending to a coronary stenosis is inversely associated with the IMR, while it is not associated with the CF

    Baseline coronary pressures, instant wave-free ratio (iFR) and Pd/Pa: making the most of available information

    No full text
    AIMS: Adoption of fractional flow reserve (FFR) remains low (6-8%), partly because of the time, cost and potential inconvenience associated with vasodilator administration. The instantaneous wave-Free Ratio (iFR) is a pressure-only index of stenosis severity calculated without vasodilator drugs. Before outcome trials test iFR as a sole guide to revascularisation, we evaluate the merits of a hybrid iFR- FFR decision-making strategy for universal physiological assessment. METHODS AND RESULTS: Coronary pressure traces from 577 stenoses were analysed. iFR was calculated as the ratio between Pd and Pa in the resting diastolic wave-free window. A hybrid iFR-FFR strategy was evaluated, by allowing iFR to defer some stenoses (where negative predictive value is high) and treat others (where positive predictive value is high), with adenosine being given only to patients with iFR in between those values. For the most recent fixed FFR cut-off (0.8), an iFR of <0.86 could be used to confirm treatment (PPV of 92%), whilst an iFR value of >0.93 could be used to defer revascularisation (NPV of 91%). Limiting vasodilator drugs to cases with iFR values between 0.86 to 0.93 would obviate the need for vasodilator drugs in 57% of patients, whilst maintaining 95% agreement with an FFR-only strategy. If the 0.75-0.8 FFR grey zone is accounted for, vasodilator drug requirement would decrease by 76%. CONCLUSION: A hybrid iFR-FFR decision-making strategy for revascularisation could increase adoption of physiology-guided PCI, by more than halving the need for vasodilator administration, whilst maintaining high classification agreement with an FFR-only strategy
    corecore