16,871 research outputs found

    Estimating the magnetic field strength from magnetograms

    Full text link
    A properly calibrated longitudinal magnetograph is an instrument that measures circular polarization and gives an estimation of the magnetic flux density in each observed resolution element. This usually constitutes a lower bound of the field strength in the resolution element, given that it can be made arbitrarily large as long as it occupies a proportionally smaller area of the resolution element and/or becomes more transversal to the observer and still produce the same magnetic signal. Yet, we know that arbitrarily stronger fields are less likely --hG fields are more probable than kG fields, with fields above several kG virtually absent-- and we may even have partial information about its angular distribution. Based on a set of sensible considerations, we derive simple formulae based on a Bayesian analysis to give an improved estimation of the magnetic field strength for magnetographs.Comment: 8 pages, 7 figures, accepted for publication in A&

    Constraining our Universe with X-ray & Optical Cluster Data

    Get PDF
    We have used recent X-ray and optical data in order to impose some constraints on the cosmology and cluster scaling relations. Generically two kind of hypotheses define our model. First we consider that the cluster population is well described by the standard Press-Schechter (PS) formalism, and second, these clusters are supposed to follow scaling relations with mass: Temperature-Mass (T-M) and X-ray Luminosity-Mass (L_x - M). As a difference with many other authors we do not assume specific scaling relations to model cluster properties such as the usual T−MT-M virial relation or one observational determination of the Lx−TL_x-T relation. Instead we consider general free parameter scaling relations. With the previous model (PS plus scalings) we fit our free parameters to several X-ray and optical data with the advantage over many other works that we consider all the data sets at the same time. This prevents us from being inconsistent with some of the available observations. Among other interesting conclusions, we find that only low-density universes are compatible with all the data considered and that the degeneracy between Ωm\Omega_m and σ8\sigma_8 is broken. Also we obtain interesting limits on the parameters characterizing the scaling relations.Comment: 11 pages, 7 figures. MNRAS accepted versio
    • …
    corecore