22 research outputs found
Recommended from our members
The Role of Astrocytes in Remyelination.
Remyelination is the regeneration of myelin sheaths following demyelination. This regenerative process is critical for the re-establishment of axonal conduction velocity and metabolic support to the axons. Successful remyelination in the CNS generally depends on the activation, proliferation, and differentiation of oligodendrocyte progenitor cells (OPCs). However, other cell types play critical roles in establishing where a lesion is conducive for regeneration. In the last few years, several studies have described beneficial and detrimental roles played by astrocytes in remyelination. This review will discuss recent developments in the concept of astrocyte reactivity, what is known about the astrocytic contribution to remyelination, and highlight future avenues of investigation.The authors’ laboratory is supported by funding from the UK Multiple Sclerosis Society (MS50), The Adelson Medical Research Foundation, and a core support grant from the Wellcome and MRC to the Wellcome-Medical Research Council Cambridge Stem Cell Institute (203151/Z/16/Z). KSR is supported by a postdoctoral fellowship from the Multiple Sclerosis Society of Canad
Association of interleukin-6 polymorphisms with obesity or metabolic traits in young Mexican-Americans
Objective The objective of the study is to investigate the association of interleukin-6 (IL6) promoter single-nucleotide polymorphisms rs1800797 (-597 G/A) and rs1800796 (-572 G/C) with obesity or metabolic syndrome in Mexican-Americans.
Methods The rs1800797 and rs1800796 single-nucleotide polymorphisms were genotyped in Mexican-Americans (n = 437) from South Texas, and results were correlated with measures of obesity and metabolic syndrome including body mass index, waist circumference, blood pressure, cholesterol, triglycerides, glucose, liver enzymes, plasma IL6 and high-sensitive C-reactive protein (hs-CRP).
Results Significant associations were found for the rs1800796 variant with increased waist circumference, insulin resistance, lower IL6 levels and higher hs-CRP levels. The rs1800797 variant showed no associations with metabolic traits but was associated with higher IL6 levels and lower hs-CRP levels.
Conclusions Findings in this study support the anti-inflammatory, anti-obesity and glucose homeostatic roles of IL6 in Mexican-American youth
A retroviral link to vertebrate myelination through retrotransposon RNA-mediated control of myelin gene expression
Myelin, the insulating sheath that surrounds neuronal axons, is produced by oligodendrocytes in the central nervous system (CNS). This evolutionary innovation, which first appears in jawed vertebrates, enabled rapid transmission of nerve impulses, more complex brains, and greater morphological diversity. Here, we report that RNA-level expression of RNLTR12-int, a retrotransposon of retroviral origin, is essential for myelination. We show that RNLTR12-int-encoded RNA binds to the transcription factor SOX10 to regulate transcription of myelin basic protein (Mbp, the major constituent of myelin) in rodents. RNLTR12-int-like sequences (which we name RetroMyelin) are found in all jawed vertebrates, and we further demonstrate their function in regulating myelination in two different vertebrate classes (zebrafish and frogs). Our study therefore suggests that retroviral endogenization played a prominent role in the emergence of vertebrate myelin.<br/
The microbiota regulates murine inflammatory responses to toxin-induced CNS demyelination but has minimal impact on remyelination.
The microbiota is now recognized as a key influence on the host immune response in the central nervous system (CNS). As such, there has been some progress toward therapies that modulate the microbiota with the aim of limiting immune-mediated demyelination, as occurs in multiple sclerosis. However, remyelination-the regeneration of myelin sheaths-also depends upon an immune response, and the effects that such interventions might have on remyelination have not yet been explored. Here, we show that the inflammatory response during CNS remyelination in mice is modulated by antibiotic or probiotic treatment, as well as in germ-free mice. We also explore the effect of these changes on oligodendrocyte progenitor cell differentiation, which is inhibited by antibiotics but unaffected by our other interventions. These results reveal that high combined doses of oral antibiotics impair oligodendrocyte progenitor cell responses during remyelination and further our understanding of how mammalian regeneration relates to the microbiota.This work was supported by grants from UK Multiple Sclerosis Society,
The British Trust for the Myelin Project, MedImmune, The Adelson Medical
Research Foundation, Wellcome Trust, BBSRC, the Leverhulme Trust and a
core support grant from the Wellcome Trust and MRC to the Wellcome
Trust - Medical Research Council Cambridge Stem Cell Institute. CEM was
supported by grants from the Jean Shanks Foundation and the James Baird
Fund, AGF was supported by an ECTRIMS fellowship and OBZ received a
BIRAX fellowship
Aging restricts the ability of mesenchymal stem cells to promote the generation of oligodendrocytes during remyelination.
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) that leads to severe neurological deficits. Due to their immunomodulatory and neuroprotective activities and their ability to promote the generation of oligodendrocytes, mesenchymal stem cells (MSCs) are currently being developed for autologous cell therapy in MS. As aging reduces the regenerative capacity of all tissues, it is of relevance to investigate whether MSCs retain their pro-oligodendrogenic activity with increasing age. We demonstrate that MSCs derived from aged rats have a reduced capacity to induce oligodendrocyte differentiation of adult CNS stem/progenitor cells. Aging also abolished the ability of MSCs to enhance the generation of myelin-like sheaths in demyelinated cerebellar slice cultures. Finally, in a rat model for CNS demyelination, aging suppressed the capability of systemically transplanted MSCs to boost oligodendrocyte progenitor cell (OPC) differentiation during remyelination. Thus, aging restricts the ability of MSCs to support the generation of oligodendrocytes and consequently inhibits their capacity to enhance the generation of myelin-like sheaths. These findings may impact on the design of therapies using autologous MSCs in older MS patients.The authors would like to thank the following funding agencies for their support: Paracelsus Medical University PMU-FFF Long-Term Fellowship L-12/01/001-RIV (to and Stand-Alone Grant E-12/15/077-RIT (both to F.J.R.); Chilean Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) FONDECYT Program Regular Grant Nº 1161787 (to F.J.R.), Regular Grant Nº 1141015 (to L.F.B.); Chilean CONICYT PCI Program Grant Nº REDES170233 (to F.J.R.), Grant Nº REDES180139 and Grant Nº REDI170037; Chilean CONICYT FONDEFIDeA Program Grant Nº ID17AM0043 (to M.E.S. and F.J.R.); European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreements N HEALTH-F2-2011-278850 (INMiND) and HEALTH-F2-2011-279288 (IDEA). The
work in the Küry laboratory was supported by the German Research Foundation (DFG; KU1934/2_1, KU1934/5-1) and the Christiane and Claudia Hempel Foundation for clinical and iBrain. The work in the Franklin laboratory was supported by grants from the UK Multiple Sclerosis Society and the Adelson Medical Research Foundation, and a core support grant from the Wellcome Trust and MRC to the Wellcome-MRC Cambridge Stem Cell Institute. In addition, the present work was supported by the state of Salzburg (to L.A.). We thank Armin Schneider, Sygnis Pharma AG Heidelberg, Germany, for the MBP promoter construct. We disclose any conflict of interest
Niche stiffness underlies the ageing of central nervous system progenitor cells.
Ageing causes a decline in tissue regeneration owing to a loss of function of adult stem cell and progenitor cell populations1. One example is the deterioration of the regenerative capacity of the widespread and abundant population of central nervous system (CNS) multipotent stem cells known as oligodendrocyte progenitor cells (OPCs)2. A relatively overlooked potential source of this loss of function is the stem cell 'niche'-a set of cell-extrinsic cues that include chemical and mechanical signals3,4. Here we show that the OPC microenvironment stiffens with age, and that this mechanical change is sufficient to cause age-related loss of function of OPCs. Using biological and synthetic scaffolds to mimic the stiffness of young brains, we find that isolated aged OPCs cultured on these scaffolds are molecularly and functionally rejuvenated. When we disrupt mechanical signalling, the proliferation and differentiation rates of OPCs are increased. We identify the mechanoresponsive ion channel PIEZO1 as a key mediator of OPC mechanical signalling. Inhibiting PIEZO1 overrides mechanical signals in vivo and allows OPCs to maintain activity in the ageing CNS. We also show that PIEZO1 is important in regulating cell number during CNS development. Thus we show that tissue stiffness is a crucial regulator of ageing in OPCs, and provide insights into how the function of adult stem and progenitor cells changes with age. Our findings could be important not only for the development of regenerative therapies, but also for understanding the ageing process itself.The work was supported by European Research Council (ERC) grant 772798 (to K.J.C.) and 772426 (to K.F.); the UK Multiple Sclerosis Society (to R.J.M.F.); Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/M008827/1 (to K.J.C and R.J.M.F.) and BB/N006402/1 (to K.F.); the Adelson Medical Research Foundation (R.J.M.F. and D.H.R.); an EMBO Long-Term Fellowship ALTF 1263-2015 and European Commission FP7 actions LTFCOFUND2013, GA-2013-609409 (to I.P.W.); and a core support grant from the Wellcome Trust and Medical Research Council (MRC) to the Wellcome Trust–MRC Cambridge Stem Cell Institute
Neuroprotective effects of Sonic hedgehog agonist SAG in a rat model of neonatal stroke.
BackgroundNeonatal stroke affects 1 in 2800 live births and is a major cause of neurological injury. The Sonic hedgehog (Shh) signaling pathway is critical for central nervous system (CNS) development and has neuroprotective and reparative effects in different CNS injury models. Previous studies have demonstrated beneficial effects of small molecule Shh-Smoothened agonist (SAG) against neonatal cerebellar injury and it improves Down syndrome-related brain structural deficits in mice. Here we investigated SAG neuroprotection in rat models of neonatal ischemia-reperfusion (stroke) and adult focal white matter injury.MethodsWe used transient middle cerebral artery occlusion at P10 and ethidium bromide (EB) injection in adult rats to induce damage. Following surgery and SAG or vehicle treatment, we analyzed tissue loss, cell proliferation and fate, and behavioral outcome.ResultsWe report that a single dose of SAG administered following neonatal stroke preserved brain volume, reduced gliosis, enhanced oligodendrocyte progenitor cell (OPC) and EC proliferation, and resulted in long-term cognitive improvement. Single-dose SAG also promoted proliferation of OPCs following focal demyelination in the adult rat.ConclusionsThese findings indicate benefit of one-time SAG treatment post insult in reducing brain injury and improving behavioral outcome after experimental neonatal stroke.ImpactA one-time dose of small molecule Sonic hedgehog agonist protected against neonatal stroke and improved long-term behavioral outcomes in a rat model. This study extends the use of Sonic hedgehog in treating developing brain injury, previously shown in animal models of Down syndrome and cerebellar injury. Sonic hedgehog agonist is one of the most promising therapies in treating neonatal stroke thanks to its safety profile and low dosage
A Subpopulation of Foxj1-Expressing, Nonmyelinating Schwann Cells of the Peripheral Nervous System Contribute to Schwann Cell Remyelination in the Central Nervous System.
New myelin sheaths can be restored to demyelinated axons in a spontaneous regenerative process called remyelination. In general, new myelin sheaths are made by oligodendrocytes newly generated from a widespread population of adult CNS progenitors called oligodendrocyte progenitor cells (OPCs). New myelin in CNS remyelination in both experimental models and clinical diseases can also be generated by Schwann cells (SCs), the myelin-forming cells of the PNS. Fate-mapping studies have shown that SCs contributing to remyelination in the CNS are often derived from OPCs and appear not to be derived from myelinating SCs from the PNS. In this study, we address whether CNS remyelinating SCs can also be generated from PNS-derived cells other than myelinating SCs. Using a genetic fate-mapping approach, we have found that a subpopulation of nonmyelinating SCs identified by the expression of the transcription factor Foxj1 also contribute to CNS SC remyelination, as well as to remyelination in the PNS. We also find that the ependymal cells lining the central canal of the spinal cord, which also express Foxj1, do not generate cells that contribute to CNS remyelination. These findings therefore identify a previously unrecognized population of PNS glia that can participate in the regeneration of new myelin sheaths following CNS demyelination.SIGNIFICANCE STATEMENT Remyelination failure in chronic demyelinating diseases such as multiple sclerosis drives the current quest for developing means by which remyelination in CNS can be enhanced therapeutically. Critical to this endeavor is the need to understand the mechanisms of remyelination, including the nature and identity of the cells capable of generating new myelin sheath-forming cells. Here, we report a previously unrecognized subpopulation of nonmyelinating Schwann cells (SCs) in the PNS, identified by the expression of the transcription factor Foxj1, which can give rise to SCs that are capable of remyelinating both PNS and CNS axons. These cells therefore represent a new cellular target for myelin regenerative strategies for the treatment of CNS disorders characterized by persistent demyelination.This work is funded by grants from the UK Multiple Sclerosis Society (941), the Medical Research Council (MR/M010531/1), the Royal Society (NA150482), the Adelson Medical Research Foundation, and a core support grant from the Wellcome Trust and MRC to the Wellcome Trust –
Medical Research Council Cambridge Stem Cell Institute. B.W received funding from the Guangzhou City Overseas Study and Research Scheme. We would like to thank Professor W.D. Richardson for providing PDGFRa-CreERT2 and Sox10iCre lines. Daniel Morrison assisted with tissue processing for electron microscop