2 research outputs found

    DNA Repair Mechanisms as Drug Targets in Prokaryotes

    Get PDF
    Nowadays, a great amount of pathogenic bacteria has been identified such as Mycobacterium sp. and Helicobacter pylori and have become a serious health problem around the world. These bacteria have developed several DNA repair mechanisms as a strategy to neutralize the effect of the exposure to endogenous and exogenous agents that will lead to two different kinds of DNA damage: single strand breaks (SSBs) and double strand breaks (DSBs). For SSBs repair, bacteria use the base excision repair (BER) and nucleotide excision repair (NER) mechanisms, which fix the damaged strand replacing the damaged base or nucleotide. DSBs repair in bacteria is performed by homologous recombination repair (HRR) and non-homologous end-joining (NHEJ). HRR uses the homologous sequence to fix the two damaged strand, while NHEJ repair does not require the use of its homologous sequence. The use of unspecific antibiotics to treat bacterial infections has caused a great deal of multiple resistant strains making less effective the current therapies with antibiotics. In this review, we emphasized the mechanisms mentioned above to identify molecular targets that can be used to develop novel and more efficient drugs in future.Nowadays, a great amount of pathogenic bacteria has been identified such as Mycobacterium sp. and Helicobacter pylori and have become a serious health problem around the world. These bacteria have developed several DNA repair mechanisms as a strategy to neutralize the effect of the exposure to endogenous and exogenous agents that will lead to two different kinds of DNA damage: single strand breaks (SSBs) and double strand breaks (DSBs). For SSBs repair, bacteria use the base excision repair (BER) and nucleotide excision repair (NER) mechanisms, which fix the damaged strand replacing the damaged base or nucleotide. DSBs repair in bacteria is performed by homologous recombination repair (HRR) and non-homologous end-joining (NHEJ). HRR uses the homologous sequence to fix the two damaged strand, while NHEJ repair does not require the use of its homologous sequence. The use of unspecific antibiotics to treat bacterial infections has caused a great deal of multiple resistant strains making less effective the current therapies with antibiotics. In this review, we emphasized the mechanisms mentioned above to identify molecular targets that can be used to develop novel and more efficient drugs in future

    Tetrahydrocurcumin Derivatives Enhanced the Anti-Inflammatory Activity of Curcumin: Synthesis, Biological Evaluation, and Structure–Activity Relationship Analysis

    No full text
    Tetrahydrocurcumin, the most abundant curcumin transformation product in biological systems, can potentially be a new alternative therapeutic agent with improved anti-inflammatory activity and higher bioavailability than curcumin. In this article, we describe the synthesis and evaluation of the anti-inflammatory activities of tetrahydrocurcumin derivatives. Eleven tetrahydrocurcumin derivatives were synthesized via Steglich esterification on both sides of the phenolic rings of tetrahydrocurcumin with the aim of improving the anti-inflammatory activity of this compound. We showed that tetrahydrocurcumin (2) inhibited TNF-α and IL-6 production but not PGE2 production. Three tetrahydrocurcumin derivatives inhibited TNF-α production, five inhibited IL-6 production, and three inhibited PGE2 production. The structure–activity relationship analysis suggested that two factors could contribute to the biological activities of these compounds: the presence or absence of planarity and their structural differences. Among the tetrahydrocurcumin derivatives, cyclic compound 13 was the most active in terms of TNF-α production, showing even better activity than tetrahydrocurcumin. Acyclic compound 11 was the most effective in terms of IL-6 production and retained the same effect as tetrahydrocurcumin. Moreover, acyclic compound 12 was the most active in terms of PGE2 production, displaying better inhibition than tetrahydrocurcumin. A 3D-QSAR analysis suggested that the anti-inflammatory activities of tetrahydrocurcumin derivatives could be increased by adding bulky groups at the ends of compounds 2, 11, and 12
    corecore